typical members of ZDg. Their sum and product are then
a+ﬂ=r—-2r2—-23+rs
af=(r+ r2 —25)(=3r% +rs)
= r(—3r2 +rs)+ r2(—3r2 +rs) — 2s(—3r2 +rs)
=-3r3+r2s -3+ +6rks — 213
=-3-534+72+r%.

The ring R appearsin RG as the “constant” formal sumsi.e., the R-multiples of the
identity of G (note that the definition of the addition and multiplicationin RG restricted
to these elements is just the addition and multiplication in R). These elements of R
commute with all elements of RG. The identity of R is the identity of RG.

The group G also appears in RG (the element g; appears as 1g; — for example,
r,s € Dy are also elements of the group ring ZDg above) — multiplication in the ring
RG restricted to G is just the group operation. In particular, each element of G has a
multiplicative inverse in the ring RG (namely, its inverse in G). This says that G is a
subgroup of the group of units of RG.

If |G| > 1 then RG always has zero divisors. For example, let g be any element
of G of order m > 1. Then

QA-gd+g+---+g"H=1-g"=1-1=0

so 1 — g is a zero divisor (note that by definition of RG neither of the formal sums in
the above product is zero).

If S is a subring of R then SG is a subring of RG. For instance, ZG (called the
integral group ring of G) is asubring of QG (the rational group ring of G). Furthermore,
if H is a subgroup of G then RH is a subring of RG. The set of all elements of RG
whose coefficients sum to zero is a subring (without identity). If |G| > 1, the set of
elements with zero “constant term” (i.e., the coefficient of the identity of G is zero) is
not a subring (it is not closed under multiplication).

Note that the group ring RQg is not the same ring as the Hamilton Quaternions H
eventhough the latter contains a copy of the quaternion group Qg (under multiplication).
One difference is thatthe unique element of order 2 in Qg (usually denoted by —1) is not
the additive inverse of 1 in RQg. In other words, if we temporarily denote the identity
of the group Qs by g; and the unique element of order 2 by g, then g; + g7 is not zero
in RQg, whereas 1 + (—1) is zero in H. Furthermore, as noted above, the group ring
R Qg contains zero divisors hence is not a division ring.

Group rings over fields will be studied extensively in Chapter 18.

EXERCISES

Let R be a commutative ring with 1.
1. Let p(x) = 2x3 — 3x2 4+ 4x — 5 and let g(x) = 7x3 + 33x — 4. In each of parts (a), (b)
and (c) compute p(x) + g(x) and p(x)q(x) under the assumption that the coefficients of
the two given polynomials are taken from the specified ring (where the integer coefficients

are taken mod n in parts (b) and (c) ):
@R=Z, (b)R=Z/2Z, (c)R=2Z/3Z.
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. Let p(x) = @yx" + ap_1x" 1+ - .-+ a1x + ap be an element of the polynomial ring R[x].

Prove that p(x) is a zero divisor in R[x] if and only if there is a nonzero » € R such that
bp(x) = 0. [Let g(x) = by x™ +bp_1x™ "1 4. - -4 bg be a nonzero polynomial of minimal
degree such that g(x)p(x) = 0. Show that b,,a,, = 0 and so a,g(x) is a polynomial of
degree less than m that also gives 0 when multiplied by p(x). Conclude that a, g(x) = 0.
Apply a similar argument to show by induction on i thata,_;g(x) =0fori =0, 1, ...,n,
and show that this implies b,, p(x) = 0.]

Define the set R[[x]] of formal power series in the indeterminate x with coefficients from
R to be all formal infinite sums

o0

Zanx" =ap+aix +azx2+a3,x3 +---.

n=0
Define addition and multiplication of power series in the same way as for power series
with real or complex coefficients i.e., extend polynomial addition and multiplication to
power series as though they were “polynomials of infinite degree™

o0 o0 o0
Zanx" + Eb,.x" = Z(an + bp)x"
n=0 n=0 n=0
o0 o0 (o) n
za,,x" X anx" = Z (Zakb,,_k)x".
n=0 n=0 n=0 k=0

(The term “formal” is used here to indicate that convergence is not considered, so that
formal power series need not represent functions on R.)

(a) Prove that R[[x]] is a commutative ring with 1.

(b) Show that 1 — x is a unit in R[[x]] with inverse 1 + x + xZ + - - - .

(c) Prove that Z?:O a,x" is a unit in R[[x]] if and only if ap is a unit in R.

. Prove thatif R is an integral domain then the ring of formal power series R[[x]] is also an

integral domain.

. Let F be a field and define the ring F ((x)) of formal Laurent series with coefficients from

F by

F((x))Z{Za,,x"Ian € FandN € Z).

n>N

(Every element of F((x)) is a power series in x plus a polynomialin 1/x, i.e., each element
of F((x)) has only a finite number of terms with negative powers of x.)

(a) Prove that F((x)) is a field.

(b) Define the map

o0
v:F((x)* > Z by U(Z ax") =N
n>N
where ay is the first nonzero coefficient of the series (i.e., N is the “order of zero or

pole of the series at 0”). Prove that v is a discrete valuation on F ((x)) whose discrete
valuation ring is F[[x]], the ring of formal power series (cf. Exercise 26, Section 1).

. Let S be aring with identity 1 # 0. Let n € Z* and let A be an n x n matrix with entries

from S whose i, j entry is a;j. Let E;; be the element of M,,(S) whose i, j entry is 1 and
whose other entries are all 0.
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9.

10.

11.

12.

13.

(a) Provethat E;; A is the matrix whose i th row equals the j th row of A and all other rows
are zero.

(b) Prove that AE;; is the matrix whose j column equals the i® column of A and all
other columns are zero.

(c) Deduce that E,; AE, is the matrix whose p, s entry is a,4, and all other entries are

Zero.

. Prove that the center of the ring My, (R) is the set of scalar matrices (cf. Exercise 7, Section

1). [Use the preceding exercise.]

. Let Sbeanyringandletn > 2 be aninteger. Prove thatif A is any strictly upper triangular

matrix in M, (S) then A" = O (a strictly upper triangular matrix is one whose entries on
and below the main diagonal are all zero).

Leta = r 4+ r% — 2s and B = —3r2 + rs be the two elements of the integral group ring
ZDg described in this section. Compute the following elements of ZDg:

@ pa, ()o?, ()ef—Pa, (d)pap.

Consider the following elements of the integral group ring ZSs:
a=3(12)-523)+14123) and B=6(1)+223)-7(132)

(where (1) is the identity of S3). Compute the following elements:

@a+p, (22-38 (Jap, (dfe, (e)a.

Repeat the preceding exercise under the assumption that the coefficients of « and B are in
Z/3Z (.e., a, B € Z[/3ZS3).

Let G = {g1, ..., g} be a finite group. Prove that theelement N = g1 + g2+ ...+ g is
in the center of the group ring RG (cf. Exercise 7, Section 1).

Let IC = {k1, ..., k) be a conjugacy class in the finite group G.

(a) Prove that the element K = kj + ... + k,, is in the center of the group ring RG (cf.
Exercise 7, Section 1). [Check that g~1Kg = K forallg € G.]

(b) Let Ky, ..., K, be the conjugacy classes of G and for each K; let K; be the element
of RG that is the sum of the members of K;. Prove that an element @ € RG is in the
center of RGifand only ife = a1 K1+a2K2+---+a, K, forsomea;, az, ...,a, € R.

7.3 RING HOMOMORPHISMS AND QUOTIENT RINGS

A ring homomorphism is a map from one ring to another that respects the additive and
multiplicative structures:

Definition. Let R and S be rings.

Sec.

(1) A ring homomorphism is amap ¢ : R — S satisfying
(i) p(a+b) =¢(@@)+¢®) foralla,b € R (so ¢ is a group homomor-
phism on the additive groups) and
(i) ¢(ab) = p(@)p®) foralla,be R.

(2) The kernel of the ring homomorphism ¢, denoted ker ¢, is the set of elements
of R that map to 0 in S (i.e., the kernel of ¢ viewed as a homomorphism of
additive groups).

(3) A bijective ring homomorphism is called an isomorphism.
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If the context is clear we shall simply use the term “homomorphism” instead of
“ring homomorphism.” Similarly, if A and B are rings, A = B will always mean an
isomorphism of rings unless otherwise stated.

- Examples

@) Themapyp :Z — Z / 27 defined by sending an even integer to 0 and an odd integer
to 1 is a ring homomorphism. The map is additive since the sum of two even or odd
integers is even and the sum of an even integer and an odd integer is odd. The map is
multiplicative since the product of two odd integers is odd and the product of an even
integer with any integer is even. The kemel of ¢ (the fiber of ¢ above 0 € Z / 2Z)is
the set of even integers. The fiber of ¢ above 1 € Z / 27 is the set of odd integers.

(2) Forn € Z the maps ¢, : Z — Z defined by ¢, (x) = nx are not in general ring homo-
morphisms because ¢, (xy) = nxy whereas ¢, (x)¢,(y) = nxny = n2xy. Hence ¢,
is a ring homomorphism only when n? = n, i.e., n = 0, 1. Note however that ¢, is
always a group homomorphism on the additive groups. Thus care should be exercised
when dealing with rings to be sure to check that both ring operations are preserved.
Note that ¢y is the zero homomorphism and ¢ is the identity homomorphism.

(3) Let ¢ : Q[x] = Q be the map from the ring of polynomials in x with rational
coefficients to the rationals defined by ¢(p(x)) = p(0) (i.e., mapping the polynomial
to its constant term). Then ¢ is a ring homomorphism since the constant term of the
sum of two polynomials is the sum of their constant terms and the constant term of
the product of two polynomials is the product of their constant terms. The fiber above
a € Q consists of the set of polynomials with a as constant term. In particular, the
kernel of ¢ consists of the polynomials with constant term 0.

Proposition S. Let R and S be rings and let ¢ : R — S be a homomorphism.
(1) The image of ¢ is a subring of S.
(2) The kernel of ¢ is a subring of R. Furthermore, if ¢ € ker¢ then roa and
ar € ker g foreveryr € R,i.e., ker ¢ is closed under multiplication by elements
from R.

Proof: (1) If 51,52 € im ¢ then s; = ¢(r;) and s, = ¢(r;) for some r;,r, € R.
Then ¢(r; — r2) = 51 — s2 and @(r1r2) = s152. This shows s; — s;, 5152 € im ¢, so the
image of ¢ is closed under subtraction and under multiplication, hence is a subring of
S.

(2)If o, B € ker ¢ then () = ¢(B) = 0. Hence (o — B) = 0 and ¢(aB) = 0,
so ker ¢ is closed under subtraction and under multiplication, so is a subring of R.
Similarly, for any r € R we have ¢(ra) = ¢(r)p(@) = ¢(r) 0 = 0, and also
(ar) = (@)e(r) =0 ¢(r) =0, sora, ar € ker¢.

In the case of a homomorphism ¢ of groups we saw that the fibers of the homo-
morphism have the structure of a group naturally isomorphic to the image of ¢, which
led to the notion of a quotient group by a normal subgroup. An analogous result is true
for a homomorphism of rings.

Let ¢ : R — S be a ring homomorphism with kernel I. Since R and S are in
particular additive abelian groups, ¢ is in particular a homomorphism of abelian groups
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and the fibers of ¢ are the additive cosets r + I of the kernel I (more precisely, if r is
any element of R mapping to a € S, ¢(r) = a, then the fiber of ¢ over a is the coset
r + I of the kernel I). These fibers have the structure of a ring naturally isomorphic to
the image of ¢: if X is the fiber overa € S and Y is the fiberover b € S,then X + Y is
the fiber over a + b and XY is the fiber over ab. In terms of cosets of the kernel I this
addition and multiplication is

r+D+G6+D=+s)+1 “.1)
G+ D x(s+I)=(@rs)+1. (7.2)

As in the case for groups, the verification that these operations define a ring structure
on the collection of cosets of the kernel I ultimately rests on the corresponding ring
properties of S. This ring of cosets is called the quotient ring of R by I = ker ¢ and
is denoted R/I. Note that the additive structure of the ring R/I is just the additive
quotient group of the additive abelian group R by the (necessarily normal) subgroup
I. When I is the kernel of some homomorphism ¢ this additive abelian quotient group
also has a multiplicative structure, defined by (7.2), which makes R/I into aring.

As in the case for groups, we can also consider whether (1) and (2) can be used to
define a ring structure on the collection of cosets of an arbitrary subgroup I of R. Note
that since R is an abelian additive group, the subgroup I is necessarily normal so that
the quotient R/ I of cosets of I is automatically an additive abelian group. The question
then is whether this quotient group also has a multiplicative structure induced from the
multiplication in R, defined by (2). The answer is no in general (just as the answer is no
in trying to form the quotient by an arbitrary subgroup of a group), which leads to the
notion of an ideal in R (the analogue for rings of a normal subgroup of a group). We
shall then see that the ideals of R are exactly the kernels of the ring homomorphisms
of R (the analogue for rings of the characterization of normal subgroups as the kernels
of group homomorphisms).

Let I be an arbitrary subgroup of the additive group R. We consider when the
multiplication of cosets in (2) is well defined and makes the additive abelian group R/I
into a ring. The statement that the multiplication in (2) is well defined is the statement
that the multiplication is independent of the particular representatives r and s chosen,
i.e.,that we obtain the same coset on the rightif instead we use the representatives r +«
and s + B forany «, B € I. In other words, we must have

r+a)s+B8)+I=rs+1 (*)

forallr,s e Randalla, B € I.

Letting r = s = 0, we see that I must be closed under multiplication, i.e., I must
be a subring of R.

Next, by letting s = 0 and letting r be arbitrary, we see that we must have rg € 1
forevery r € R and every B € I, i.e., that I must be closed under multiplication on the
left by elements from R. Letting r = 0 and letting s be arbitrary, we see similarly that
I must be closed under multiplication on the right by elements from R.

Conversely, if I is closed under multiplication on the left and on the right by
elements from R then the relation (x) is satisfied for all o, 8 € I. Hence this is a
necessary and sufficient condition for the multiplication in (2) to be well defined.
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Finally, if the multiplication of cosets defined by (2) is well defined, then this
multiplication makes the additive quotient group R/! into a ring. Each ring axiom in
the quotient follows directly from the corresponding axiom in R. For example, one of
the distributive laws is verified as follows:

rr+DEE+D++D]I=C+DI(s+1)+ 1]
=r(s+)+I=Gs+rt)+1
=@rs+D+@t+1)
=[(r+ D+ DI+ [0+ D+ D]

This shows that the quotient R/ of the ring R by a subgroup I has a natural ring
structure if and only if / is also closed under multiplication on the left and on the right
by elements from R (so in particular must be a subring of R since it is closed under
multiplication). As mentioned, such subrings I are called the ideals of R:

Definition. Let R be aring, let I be asubsetof R and let r € R.
Q) rI={ralael} and Ir={ar|acl}.
(2) A subset I of R is a left ideal of R if
(i) I is a subring of R, and
(i) I is closed under left multiplication by elements from R, i.e., rl C I
forallr € R.
Similarly I is a right ideal if (i) holds and in place of (ii) one has
(ii)’ I is closed under right multiplication by elements from R, i.e., Ir C I
forallr € R.
(3) A subset I that is both a left ideal and a right ideal is called an ideal (or, for
added emphasis, a two-sided ideal) of R.

For commutative rings the notions of left, right and two-sided ideal coincide. We
emphasize that to prove a subset / of aring R is an ideal it is necessary to prove that [ is
nonempty, closed under subtraction and closed under multiplication by all the elements
of R (and not just by elements of 7). If R has a 1 then (—1)a = —a so in this case [ is
an ideal if it is nonempty, closed under addition and closed under multiplication by all
the elements of R.

Note also that the last part of Proposition 5 proves that the kernel of any ring
homomorphism is an ideal.

We summarize the preceding discussion in the following proposition.

Proposition 6. Let R be a ring and let I be an ideal of R. Then the (additive) quotient
group R/1 is a ring under the binary operations:

r+D+G+D=FC+s)+1 and r+DxGE+D=@Gs)+1
forall r,s € R. Conversely, if I is any subgroup such that the above operations are
well defined, then I is an ideal of R.
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Definition. When [ is an ideal of R the ring R/I with the operations in the previous
proposition is called the quotient ring of R by 1.

Theorem 7.
(1) (The First Isomorphism Theorem for Rings) If ¢ : R — S is a homomorphism
of rings, then the kernel of ¢ is an ideal of R, the image of ¢ is a subring of S
and R/ ker ¢ is isomorphic as a ring to ¢(R).
(2) If I is any ideal of R, then the map

R— R/I defined by r—>r+1

is a surjective ring homomorphism with kernel / (this homomorphism is called
the natural projection of R onto R/I). Thus every ideal is the kernel of a ring
homomorphism and vice versa.

Proof: This is just a matter of collecting previous calculations. If I is the kernel of
@, then the cosets (under addition) of I are precisely the fibers of ¢. In particular, the
cosetsr + 1, s+ 1 and rs + I are the fibers of ¢ over ¢(r), ¢(s) and ¢(rs), respectively.
Since ¢ is a ring homomorphism ¢(r)¢(s) = ¢(rs), hence r + I)(s + 1) = rs + 1.
Multiplication of cosets is well defined and so I is an ideal and R/I is a ring. The
correspondence r + I +— @(r) is a bijection between the rings R/I and ¢(R) which
respects addition and multiplication, hence is a ring isomorphism.

If 1 is any ideal, then R/I is a ring (in particular is an abelian group) and the map
7 :r — r + I is a group homomorphism with kernel /. It remains to check that r is a
ring homomorphism. This is immediate from the definition of multiplication in R/1:

w:rs—>rs+I1=0+1DE+I1)=a@)r(s).

As with groups we shall often use the bar notation for reductionmod I: 7 = r + 1.
With this notation the addition and multiplication in the quotient ring R/I become
simply 7 +S=r+sandrs =7s.

Examples

Let R be aring.

(1) The subrings R and {0} are ideals. An ideal I is proper if I # R. The ideal {0} is
called the trivial ideal and is denoted by O.

(2) It is immediate that nZ is an ideal of Z for any n € Z and these are the only ideals of
Z since in particular these are the only subgroups of Z. The associated quotient ring
is Z/nZ (which explains the choice of notation and which we have now proved is a
ring), introduced in Chapter 0. For example, if n = 15 then the elements of Z / 15Z
arethecosets 0,1, ..., 13, 14. To add (or multiply) in the quotient, simply choose any
representatives for the two cosets, add (multiply, respectively) these representatives
in the integers Z, and take the correspondmg coset containing this sum (product,
respectively). For example, 7+ 11 = 18 and 18 = 3,507 4 11 = 3 in Z/ISZ
Similarly, 711=77=2inZ / 15Z. We could also express this by writing 7+ 11 =
3mod15,7(11) =2mod 15.

The natural projection Z — Z/nZis called reduction mod n and will be discussed

further at the end of these examples.
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(3) Let R = Z[x] be the ring of polynomials in x with integer coefficients. Let I be the

collection of polynomials whose terms are of degree at least 2 (i.e., having no terms
of degree O or degree 1) together with the zero polynomial. Then 7 is an ideal: the
sum of two such polynomials again has terms of degree at least 2 and the product of a
polynomial whose terms are of degree at least 2 with any polynomial again only has
terms of degree at least 2. Two polynomials p(x), g(x) are in the same coset of I if
and only if they differ by a polynomial whose terms are of degree at least 2, i.e., if
and onlyif p(x) and g(x) have the same constant and first degree terms. Forexample,
the polynomials 3 + 5x + x3 + x> and 3 4 5x — x* are in the same coset of 7. It
follows easily that a complete set of representatives for the quotient R/I is given by
the polynomials a + bx of degree at most 1.

Addition and multiplication in the quotient are again performed by representatives.
For example,

(THF3x)+(=4+5x) =3 + 8

and I __
(T+3x)N(—4+5x)=(—-4—Tx+15x2) = 4~ Tx.

Note that in this quotient ring R/I we have X X = x2 = 0, for example, so that
R/ has zero divisors, even though R = Z[x] does not.

(4) Let A be aring, let X be any nonempty set and let R be the ring of all functions from

X to A. For each fixed ¢ € X the map
E.:R—> A definedby E.(f)= f(c)

(called evaluation at c) is a ring homomorphism because the operations in R are
pointwise addition and multiplication of functions. The kernel of E. is given by
{f € R | f(c) = 0} (the set of functions from X to A that vanish at ¢). Also, E. is
surjective: givenanya € A the constant function f(x) = a maps to a under evaluation
atc. Thus R/kerE. = A.

Similarly, let X be the closed interval [0,1] in R and let R be the ring of all
continuous real valued functions on [0,1]. For each ¢ € [0, 1], evaluation at c¢ is
a surjective ring homomorphism (since R contains the constant functions) and so
R/ker E. = R. The kernel of E. is the ideal of all continuous functions whose graph
crosses the x-axis at c. More generally, the fiber of E. above the real number yy is the
set of all continuous functions that pass through the point (c, yp).

(5) The map fromthe polynomial ring R[x] to R defined by p(x) — p(0) (evaluation at 0)

is a ring homomorphism whose kernel is the set of all polynomials whose constant term
is zero, i.e., p(0) = 0. We can compose this homomorphism with any homomorphism
from R to another ring S to obtain a ring homomorphism from R[x] to S. For example,
let R = Z and consider the homomorphism Z[x] — Z/2Z defined by the composition
p(x) — p(0) — p(0) mod 2 € Z/2Z. The kernel of this composite map is given by
{p(x) € Z[x] | p(0) € 2Z}, i.e., the set of all polynomials with integer coefficients
whose constant term is even. The other fiber of this homomorphism is the coset
of polynomials whose constant term is odd, as we determined earlier. Since the
homomorphism is clearly surjective, the quotient ring is Z/2Z.

(6) Fix some n € Z with n > 2 and consider the noncommutative ring M, (R). If J
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is any ideal of R then M, (J), the n x n matrices whose entries come from J, is a
two-sided ideal of M, (R). This ideal is the kernel of the surjective homomorphism
M, (R) > M, (R/J) which reduces each entry of a matrix mod J, i.e., which maps
each entry g;; to a;; (here bar denotes passage to R/ J). For instance, whenn = 3 and
R = 7Z, the 3 x 3 matrices whose entries are all even is the two-sided ideal M3(27Z)
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of M3(Z) and the quotient M3(Z)/M3(2Z) is isomorphic to M3(Z/2Z). If the ring R
has an identity then the exercises below show that every two-sided ideal of M,,(R) is
of the form M,, (J) for some two-sided ideal J of R.

(7) Let R be a commutative ring with | and let G = {g, - .., g»} be a finite group. The
map from the group ring RG to R defined by Y 7_, aigi > Y i a; is easily seen to
be a homomorphism, called the augmentation map . The kernel of the augmentation
map, the augmentationideal, is the set of elements of RG whose coefficients sum to
0. For example, g; — g; is an element of the augmentation ideal for all i, j. Since the
augmentation map is surjective, the quotient ring is isomorphic to R.

Another ideal in RG is {};_, agi | a € R}, i.e., the formal sums whose coeffi-
cients are all equal (equivalently, all R-multiples of the element g1 + - - - + gn).

(8) Let R be acommutativering with identity 1 # 0 and letn € Z withn > 2. We exhibit
some one-sided ideals in the ring M,,(R). Foreach j € {1,2, ..., n} let L; be the set
of all n x n matrices in M,,(R) with arbitrary entries in the j column and zeros in all
other columns. It is clear that L; is closed under subtraction. It follows directly from
the definition of matrix multiplication that for any matrix T € M, (R) andany A € L;
the product T A has zero entries in the i column for all i # j. This shows L j is aleft
ideal of M,(R). Moreover, L; is not a right ideal (hence is not a two-sided ideal). To
see this, let E,, be the matrix with 1 inthe p'™ row and g™ column and zeros elsewhere
(p.q € {1,...,n}). Then E;; € Lj but E1;Ej; = Ey; ¢ Ljifi # j, so Lj is not
closed under right multiplication by arbitrary ring elements. An analogous argument
shows that if R; is the set of all n x n matrices in M, (R) with arbitrary entries in the
j™ row and zeros in all other rows, then R; is a right ideal which is not a left ideal.
These one-sided ideals will play an important role in Part VL.

Example: (The Reduction Homomorphism)

The canonical projection map from Z to Z /nZ obtained by factoring out by the ideal nZ of
Z is usually referred to as “reducing modulo n.”” The fact that this is a ring homomorphism
has important consequences for elementary number theory. For example, suppose we are
trying to solve the equation

x? +y? =37

in integers x, y and z (such problems are frequently referred to as Diophantine equations
after Diophantus, who was one of the first to systematically examine the existence of
integer solutions of equations). Suppose such integers exist. Observe first that we may
assume x, y and z have no factors in common, since otherwise we could divide through this
equation by the square of this common factor and obtain another set of integer solutions
smaller than the initial ones. This equation simply states a relation between these elements
in the ring Z. As such, the same relation must also hold in any guotient ring as well.
In particular, this relation must hold in Z/nZ for any integer n. The choice n = 4 is
particularly efficacious, for the following reason: the squares mod4 are just 02, 12, 22, 32,
ie,0,1 (mod 4). Reading the above equation mod 4 (that is, considering this equation in
the quotient ring Z/47Z), we must have

HRERHRLRE

where the (1) , for example, indicates that either a O or a 1 may be taken. Checking

the few possibilities shows that we must take the O each time. This means that each
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of x, y and z must be even integers (squares of the odd integers gave us 1 mod 4). But
this contradicts the assumption of no common factors for these integers, and shows
that this equation has no solutions in nonzero integers.

Note that even had solutions existed, this technique gives information about the
possible residues of the solutions mod n (since we could just as well have examined
the possibilities mod »n as mod 4) and note that for each choice of n we have only
a finite problem to solve because there are only finitely many residue classes mod
n. Together with the Chinese Remainder Theorem (described in Section 6), we can
then determine the possible solutions modulo very large integers, which greatly assists
in finding them numerically (when they exist). We also observe that this technique
has a number of limitations — for example, there are equations which have solutions
modulo every integer, but which do not have integer solutions. An easy example (but
extremely hard to verify that it does indeed have this property) is the equation

3x3 +4y3 +528 =0.

As a final example of this technique, we mention that the map from the ring
Z|[x] of polynomials with integer coefficients to the ring Z/ pZ[x] of polynomials with
coefficients in Z/ pZ for a prime p given by reducing the coefficients modulo p is a
ring homomorphism. This example of reduction will be used in Chapter 9 in trying to
determine whether polynomials can be factored.

The following theorem gives the remaining Isomorphism Theorems forrings. Each
of these may be proved as follows: first use the corresponding theorem from group
theory to obtain an isomorphism of additive groups (or correspondence of groups,
in the case of the Fourth Isomorphism Theorem) and then check that this group iso-
morphism (or correspondence, respectively) is a multiplicative map, and so defines a
ring isomorphism. In each case the verification is immediate from the definition of
multiplication in quotient rings. For example, the map that gives the isomorphism
in (2) below is defined by ¢ : r + I — r + J. This map is multiplicative since
(r1 + D)(r2 + I) = rrp + I by the definition of the multiplication in the quotient ring
R/I,andryro+1 v rirp+J = (r1+ J)(r2+ J) by the definition of the multiplication
in the quotient ring R/ J, i.e., ¢(r1r2) = ¢(r1)9(r2). The proofs for the other parts of
the theorem are similar.

Theorem 8. Let R be aring.

(1) (The Second Isomorphism Theorem for Rings) Let A be a subring and let B be
anidealof R. ThenA+ B ={a+b|a€ A, b e B}isasubringof R, ANB
is an ideal of A and (A + B)/B = A/(A N B).

(2) (The Third Isomorphism Theorem for Rings) Let I and J be ideals of R with
I € J. Then J/I isanideal of R/I and (R/1)/(J/I) = R/J.

(3) (The Fourth or Lattice Isomorphism Theorem for Rings) Let I be an ideal of R.
The correspondence A <> A/ I is an inclusion preserving bijection between the
setof subrings A of R that contain I and the set of subrings of R/ I. Furthermore,
A (a subring containing I) is an ideal of R if and only if A/I is an ideal of R/I.
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Let R = Z and let I be the ideal 12Z. The quotient ring R = R/I = Z/12Z has
ideals R, 2Z/12Z, 3Z/12Z, 4Z/12Z, 6Z./12Z, and 0 = 12Z/12Z corresponding to
the ideals R = Z, 27, 3Z, 4Z, 6Z and 12Z = I of R containing [, respectively.

If I and J are ideals in the ring R then the set of sums a + b witha € I andb € J
is not only a subring of R (as in the Second Isomorphism Theorem for Rings), but is an
ideal in R (the set is clearly closed under sums and r(a + b) = ra +rb € I + J since
ra € I and rb € J). We can also define the product of two ideals:

Definition. Let I and J be ideals of R.

(1) Define the sumof land Jby I+ J ={a+b|a €I, be J}.

(2) Define the product of I and J, denoted by I J, to be the set of all finite sums of
elements of the form ab witha € I and b € J.

(3) For any n > 1, define the n power of I, denoted by I™, to be the set consisting
of all finite sums of elements of the form a;a; - - - a, witha; € I for all i.
Equivalently, I" is defined inductively by defining I' = I, and I"* = 11"~ for
n=2273,....

It is easy to see that the sum I + J of the ideals I and J is the smallest ideal of R
containing both I and J and that the product / J is an ideal contained in I N J (but may
be strictly smaller, cf. the exercises). Note also that the elements of the product ideal 1 J
are finite sums of products of elements ab from I and J. The set {ab |a € I, b € J}
consisting just of products of elements from I and J is in general not closed under
addition, hence is not in general an ideal.

Examples

(D) Letl =6ZandJ = 10ZinZ. Then I +J consists of all integers of the form 6x + 10y
with x, y € Z. Since every such integer is divisible by 2, the ideal I + J is contained
in 2Z. On the other hand, 2 = 6(2) + 10(—1) shows that the ideal I 4+ J contains the
ideal 2Z, so that 6Z + 10Z = 2Z. In general, mZ + nZ = dZ, where d is the greatest
common divisor of m and n. The product I J consists of all finite sums of elements of
the form (6x)(10y) with x, y € Z, which clearly gives the ideal 60Z.

(2) LetI betheideal in Z[x] consisting of the polynomials with integer coefficients whose
constant term is even (cf. Example 5). The two polynomials 2 and x are contained in
I, soboth4 = 2.2 and x2 = x - x are elements of the product ideal I2 =1II, asis
their sum x2 +4. It is easy to check, however, that x2 44 cannot be written as a single
product p(x)q(x) of two elements of 1.

EXERCISES

Let R be a ring with identity 1 # 0.
1. Prove that the rings 2Z and 3Z are not isomorphic.
2. Prove that the rings Z[x] and Q[x] are not isomorphic.
3. Find all homomorphic images of Z.
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4. Find all ring homomorphisms from Z to Z/30Z. In each case describe the kernel and the
image.

5. Describe all ring homomorphisms from the ring Z x Z to Z. In each case describe the
kernel and the image.

6. Decide which of the following are ring homomorphisms from M2(Z) to Z:

(a) (a b

c d — a (projection onto the 1,1 entry)

(b) (Z Z) — a+d (the trace of the matrix)

(©) (Z Z) — ad — bc (the determinant of the matrix).

7. LetR = {([(l) Z) | a, b, d € Z} be the subring of M2(Z) of upper triangular matrices.
Prove that the map

¢:R—> Zx7Z defined by (p:(g Z)»—»(a,d)

is a surjective homomorphism and describe its kernel.

8. Decide which of the following are ideals of the ring Z x Z:
@ {(a,a) |a €Z}
(b) {(2a,2b) | a,b € Z}
(©) {(24,0) |a € Z}
d) {(a,—a)|aeZ}
9. Decide which of the sets in Exercise 6 of Section 1 are ideals of the ring of all functions
from [0,1] to R.

Decide which of the following are ideals of the ring Z[x]:

(a) the setof all polynomials whose constant term is a multiple of 3

(b) the set of all polynomials whose coefficient of x? is a multiple of 3

(¢) the set of all polynomials whose constant term, coefficient of x and coefficient of x2
are zero

(d) Z[x?] (i.e., the polynomials in which only even powers of x appear)

(e) the set of polynomials whose coefficients sum to zero

(f) thesetof polynomials p(x) such that p’(0) = 0, where p’(x) is the usual first derivative
of p(x) with respect to x.

10

11. Let R bethering of all continuous real valued functions on theclosed interval [0, 1]. Prove
that the map ¢ : R — R defined by ¢(f) = fol f(#)dt is a homomorphism of additive
groups but not a ring homomorphism.

a

12. Let D be an integer that is not a perfect square in Z and let S = {( Db

b) |a,beZ}.
a

(a) Prove that S is a subring of M3 (Z).
(b) If D is not a perfect square in Z prove that the map ¢ : Z[+/D] — S defined by
pla+bv/D) = ( a b) is a ring isomorphism.
Db a
a b

(c) If D = 1 mod4 is squarefree, prove that the set {( (D—1)b/4 a+b

)Ia,beZ}

is a subring of M(Z) and is isomorphic to the quadratic integer ring O.
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13. Prove that the ring M»(R) contains a subring that is isomorphic to C.

14. Prove that the ring M4(R) contains a subring that is isomorphic to the real Hamilton
Quaternions, H.
15. Let X be a nonempty set and let P(X) be the Boolean ring of all subsets of X defined in
Exercise 21 of Section 1. Let R be the ring of all functions from X into Z/2Z. For each
A € P(X) define the function
1 ifxeA
0 ifx¢gA
(x4 is called the characteristic function of A with values in Z/27). Prove that the map
P(X) - R defined by A > x4 is a ring isomorphism.
16. Letg : R — S be a surjective homomorphism of rings. Prove that the image of the center
of R is contained in the center of S (cf. Exercise 7 of Section 1).
17. Let R and S be nonzero rings with identity and denote their respective identities by 1x
and 1s. Let ¢ : R — S be a nonzero homomorphism of rings.
(a) Prove that if ¢(1g) # 1gs then ¢(l1g) is a zero divisor in S. Deduce that if S is an
integral domain then every ring homomorphism from R to S sends the identity of R
to the identity of S.
(b) Prove that if ¢(1g) = 15 then () is a unit in S and that o) = @(u)~! for each
unit u of R.
18. (a) If I and J are ideals of R prove that their intersection I N J is also an ideal of R.
(b) Prove that the intersection of an arbitrary nonempty collection of ideals is again an
ideal (do not assume the collection is countable).
19. Prove thatif I} C I, C - - - are ideals of R then Us":ll,l is an ideal of R.

20. Let I be an ideal of R and let S be a subring of R. Prove that I N S is an ideal of S. Show
by example that not every ideal of a subring S of a ring R need be of the form 7 N § for
some ideal 7 of R.
Prove that every (two-sided) ideal of M,,(R) is equal to M, (J) for some (two-sided) ideal
J of R. [Use Exercise 6(c) of Section 2 to show first that the set of entries of matrices in
an ideal of M, (R) form an idealin R.]
22. Leta be an element of the ring R.
(a) Provethat{x € R | ax = 0} is arightideal and {y € R | ya = 0} is a left ideal (called
respectively the right and left annihilators of a in R).
(b) Prove that if L is a left ideal of R then {x € R | xa = 0 foralla € L} is a two-sided
ideal (called the left annihilator of L in R).

23. Let S be a subring of R and let 7 be an ideal of R. Prove that if SN I = 0 then S=s,
where the bar denotes passage to R/1.

XA: X > Z/2Z by xa(x) = {

21

.

24. Let ¢ : R — S be a ring homomorphism.
(a) Prove that if J is an ideal of S then ¢ ~1(J) is an ideal of R. Apply this to the special
case when R is a subring of S and ¢ is the inclusion homomorphism to deduce that if
J is an ideal of S then J N R is an ideal of R.
(b) Prove thatif ¢ is surjective and I is an ideal of R then ¢(7) is an ideal of S. Give an
example where this fails if ¢ is not surjective.

25. Assume R is a commutative ring with 1. Prove that the Binomial Theorem

(@+b" =) (:)akb”_k

k=0
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26.

27.
28.

29.

30.

31

32.

33.

3s.

holds in R, where the binomial coefficient (ﬁ) isinterpretedin R asthesum 14+1+4---+1
of the identity 1 in R taken (}) times.

The characteristic of aring R is the smallest positive integer n suchthat1+14---4+1=0
(n times) in R; if no such integer exists the characteristic of R is said to be 0. For example,
Z/nZ is aring of characteristic n for each positive integer n and Z is a ring of characteristic
0.

(a) Provethatthe map Z — R defined by

14+ 14---4+1 (k times) ifk>0
k> {0 ifk=0
—1—-1—---—1(—ktimes) ifk <O

is a ring homomorphism whose kernel is nZ, where n is the characteristic of R (this
explains the use of the terminology “characteristic 0” instead of the archaic phrase
“characteristic 0o” for rings in which no sum of 1’s is zero).

(b) Determine the characteristics of the rings Q, Z[x], Z/nZ[x].

(c) Prove that if p is a prime and if R is a commutative ring of characteristic p, then
(@a+b)P =aP 4+ bP foralla,b € R.

Prove that a nonzero Boolean ring has characteristic 2 (cf. Exercise 15, Section 1).

Prove that an integral domain has characteristic p, where p is either a prime or 0 (cf.
Exercise 26).

Let R be a commutative ring. Recall (cf. Exercise 13, Section 1) that an element x € R
is nilpotent if x = 0 for some n € Z*. Prove that the set of nilpotent elements form an
ideal — called the nilradical of R and denoted by 91(R). [Use the Binomial Theorem to
show D1(R) is closed under addition.]

Prove thatif R is acommutative ring and 91(R) is its nilradical (cf. the preceding exercise)
then zero is the only nilpotent element of R/91(R) i.e., prove that 91(R/9(R)) = 0.

Prove that the elements (8 (1)) and ((1)
sum is not nilpotent (note that these two matrices do not commute). Deduce that the set

of nilpotent elements in the noncommutative ring M>(Z) is not an ideal.

g) are nilpotent elements of M>(Z) whose

Let ¢ : R — S be a homomorphism of rings. Prove that if x is a nilpotent element of R
then ¢(x) is nilpotent in S.

Assume R is commutative. Let p(x) = anx" 4+ a,_1x" "1 4 - -- 4+ a1 x 4 ag be an element

of the polynomial ring R[x].

(a) Prove that p(x) is a unit in R[x] if and only if ap is a unit and ay, az, ..., a, are
nilpotent in R. [ See Exercise 14 of Section 1.]

(b) Provethat p(x) is nilpotent in R[x] if and only if ag, a1, . . ., a, are nilpotent elements
of R.

. Let I and J be ideals of R.

(a) Prove that I + J is the smallest ideal of R containing both I and J.
(b) Prove that 1J is an ideal containedin I N J.

(c) Give anexample where IJ #£1NJ.

(d) Prove thatif R is commutative andif/ +J = RthenIJ =1INJ.

Let I, J, K be ideals of R.

(@) Provethat I+ K)=IJ+IKand (I + J)K =IK + JK.
(b) Provethatif JC I'thenIN(J+ K)=J+{UNK).
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36. Show that if 7 is the ideal of all polynomials in Z[x] with zero constant term then
I" = {anx" + an1 X" 4 - -+ ay1mx"t" | a; € Z, m > 0} is the set of polynomials
whose first nonzero term has degree at least n.

37. Anideal N is called nil potent if N" is the zero ideal for some n > 1. Prove that the ideal
PZ[/p™Z is anilpotent ideal in the ring Z/p™ Z.

7.4 PROPERTIES OF IDEALS
Throughout this section R is a ring with identity 1 # 0.

Definition. Let A be any subset of the ring R.

(1) Let (A) denote the smallest ideal of R containing A, called the ideal generated
by A.

(2) Let RA denote the set of all finite sums of elements of the form ra withr € R
anda € Aie., RA={rnai+nrnay+---+ra, | ri €R, as € A, neZ")
(where the convention is RA = 0 if A = 09).

Similarly, AR = {a;ry + aars+---+aurn, |ri € R, a; € A, n € Z*} and
RAR = {nairi + nary +---+rpaur, | ri,rl € R, a; € A, n € Z*}.
(3) Anideal generated by a single element is called a principal ideal.
(4) An ideal generated by a finite set is called a finitely generated ideal.

When A = {a}or{ay, ay, ...}, etc., we shall drop the set brackets and simply write
(a), (a1, az, .. .) for (A), respectively.

The notion of ideals generated by subsets of a ring is analogous to that of subgroups
generated by subsets of a group (Section 2.4). Since the intersection of any nonempty
collection of ideals of R is also an ideal (cf. Exercise 18, Section 3) and A is always
contained in at least one ideal (namely R), we have

W= (1.

I an ideal
ACT

i.e., (A) is the intersection of all ideals of R that contain the set A.

The left ideal generated by A is the intersection of all left ideals of R that contain
A. This left ideal is obtained from A by closing A under all the operations that define
a left ideal. It is immediate from the definition that RA is closed under addition and
under left multiplication by any ring element. Since R has an identity, RA contains
A. Thus RA is a left ideal of R which contains A. Conversely, any left ideal which
contains A must contain all finite sums of elements of the form ra,r € Randa € A
and so must contain RA. Thus RA is precisely the left ideal generated by A. Similarly,
AR is the right ideal generated by A and RAR is the (two-sided) ideal generated by
A. In particular,

if R is commutative then RA = AR = RAR = (A).
When R is a commutative ring and a € R, the principal ideal (a) generated by

a is just the set of all R-multiples of a. If R is not commutative, however, the set
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{ras | r, s € R} is not necessarily the two-sided ideal generated by a since it need not
be closed under addition (in this case the ideal generated by a is the ideal RaR, which
consists of all finite sums of elements of the form ras, r, s € R).

The formation of principal ideals in a commutative ring is a particularly simple way
of creating ideals, similar to generating cyclic subgroups of a group. Notice that the
element b € R belongs to the ideal (a) if and only if b = ra forsome r € R, i.e., if and
only if b is a multiple of a or, put another way, a divides b in R. Also, b € (a) if and
only if (b) C (a). Thus containment relations between ideals, in particular between
principal ideals, is seen to capture some of the arithmetic of general commutative rings.
Commutative rings in which all ideals are principal are among the easiest to study and
these will play an important role in Chapters 8 and 9.

Examples

(1) The trivial ideal O and the ideal R are both principal: 0 = (0) and R = (1).

(2) InZ we have nZ = Zn = (n) = (—n) for all integers n. Thus our notation for aR
is consistent with the definition of nZ we have been using. As noted in the preceding
section, these are all the ideals of Z so everyideal of Z s principal. For positive integers
n and m, nZ C mZ if and only if m divides n in Z, so the lattice of ideals containing
nZ is the same as the lattice of divisors of n. Furthermore, the ideal generated by two
nonzero integers n and m is the principal ideal generated by their greatest common
divisor, d: (n, m) = (d). The notation for (n, m) as the greatest common divisor of
n and m is thus consistent with the same notation for the ideal generated by n and m
(although a principal generator for the ideal generated by n and m is determined only
up to a % sign — we could make it unique by choosing a nonnegative generator). In
particular, n and m are relatively prime if and only if (n, m) = (1).

(3) We show that the ideal (2, x) generated by 2 and x in Z[x] is not a principal ideal.
Observe that (2, x) = {2p(x) + xg(x) | p(x), g(x) € Z[x]} and so this ideal consists
precisely of the polynomials with integer coefficients whose constant term is even
(as discussed in Example 5 in the preceding section) — in particular, this is a proper
ideal. Assume by way of contradiction that (2, x) = (a(x)) for some a(x) € Z[x].
Since 2 € (a(x)) there must be some p(x) such that 2 = p(x)a(x). The degree of
p(x)a(x) equals degree p(x) + degree a(x), henceboth p(x) and a(x) must be constant
polynomials, i.e., integers. Since 2 is a prime number, a(x), p(x) € {1, £2}. If
a(x) were %1 then every polynomial would be a multiple of a(x), contrary to (a(x))
being a proper ideal. The only possibility is a(x) = +2. Butnow x € (a(x)) = (2) =
(—2) and so x = 2q(x) for some polynomial g (x) with integer coefficients, clearly
impossible. This contradiction proves that (2, x) is not principal.

Note that the symbol (A) is ambiguous if the ring is not specified: the ideal
generated by 2 and x in Q[x] is the entire ring (1) since it contains the element
12=1
’ We shall see in Chapter 9 that for any field F, all ideals of F[x] are principal.

(4) If R is the ring of all functions from the closed interval [0,1] into R let M be the ideal
{f1f (%) = 0} (the kernel of evaluation at %). Let g(x) be the function which is zero
atx = % and 1 at all other points. Then f = fg forall f € M so M is a principal

ideal with generator g. Infact, any function which is zero at % and nonzero at all other
points is another generator for the same ideal M.

On the other hand, if R is the ring of all continuous functions from[0,1] to R then
{(fi|f (%) = 0} is not principal nor is it even finitely generated (cf. the exercises).
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(5) If G is a finite group and R is a commutative ring with 1 then the augmentation ideal
is generated by the set {g — 1 | g € G}, although this need not be a minimal set of
generators. Forexample, if G is a cyclic group with generator o, then the augmentation
ideal is a principal ideal with generatoro — 1.

Proposition 9. Let I be an ideal of R.
(1) I = Rifand onlyifI contains a unit.
(2) Assume R is commutative. Then R is a field if and only if its only ideals are 0
and R.

Proof: (1) If I = R then I contains the unit 1. Conversely, if u is a unitin I with
inverse v, then forany r € R

r=r-1=r(vu)=@v)uel

hence R = 1.

(2) The ring R is a field if and only if every nonzero element is a unit. If R is a
field every nonzero ideal contains a unit, so by the first part R is the only nonzero ideal.
Conversely, if 0 and R are the only ideals of R let # be any nonzero element of R. By
hypothesis (#) = R and so 1 € (). Thus there is some v € R such that 1 = vy, i.e., u
is a unit. Every nonzero element of R is therefore a unit and so R is a field.

Corollary 10. If R is a field then any nonzero ring homomorphism from R into another
ring is an injection.

Proof: The kernel of a ring homomorphism is an ideal. The kernel of a nonzero
homomorphism is a proper ideal hence is O by the proposition.

These results show that the ideal structure of fields is trivial. Our approach to
studying an algebraic structure through its homomorphisms will still play a fundamental
role in field theory (Part IV) when we study injective homomorphisms (embeddings) of
one field into another and automorphisms of fields (isomorphisms of a field to itself).

If D is a ring with identity 1 # 0 in which the only left ideals and the only right
ideals are 0 and D, then D is a division ring. Conversely, the only (left, right or two-
sided) ideals in a division ring D are 0 and D, which gives an analogue of Proposition
9(2) if R is not commutative (see the exercises). However, if F is a field, then for
any n > 2 the only two-sided ideals in the matrix ring M, (F) are 0 and M, (F), even
though this is not a division ring (it does have proper, nontrivial, left and right ideals:
cf. Section 3), which shows that Proposition 9(2) does not hold for noncommutative
rings. Rings whose only two-sided ideals are O and the whole ring (which are called
simple rings) will be studied in Chapter 18.

One important class of ideals are those which are not contained in any other proper
ideal:

Definition. An ideal M in an arbitrary ring S is called a maximal ideal if M # S and
the only ideals containing M are M and S.
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A general ring need not have maximal ideals. For example, take any abelian group
which has no maximal subgroups (for example, Q — cf. Exercise 16, Section 6.1) and
make it into a trivial ring by defining ab = 0 for all a, b. In such a ring the ideals are
simply the subgroups and so there are no maximal ideals. The zero ring has no maximal
ideals, hence any result involving maximal ideals forces a ring to be nonzero. The next
proposition shows that rings with an identity 1 # 0 always possess maximal ideals.
Like many such general existence theorems (e.g., the result that a finitely generated
group has maximal subgroups or that every vector space has a basis) the proof relies
on Zorn’s Lemma (see Appendix I). In many specific rings, however, the presence of
maximal ideals is often obvious, independent of Zorn’s Lemma.

Proposition 11. In a ring with identity every proper ideal is contained in a maximal
ideal.

Proof: Let R be aring with identity and let I be a proper ideal (so R cannot be the
zeroring, i.e., 1 # 0). Let S be the set of all proper ideals of R which contain /. Then
S is nonempty (I € S) and is partially ordered by inclusion. If C is a chain in S, define
J to be the union of all ideals in C:

J=Ja.
AeC

We first show that J is an ideal. Certainly J is nonempty because C is nonempty
— specifically, 0 € J since O is in every ideal A. If a, b € J, then there are ideals
A, B € Csuchthata € A and b € B. By definition of a chain either A C B or B C A.
Ineither case a — b € J, so J is closed under subtraction. Since each A € C is closed
under left and right multiplication by elements of R, sois J. This proves J is an ideal.

If J is not a proper ideal then 1 € J. In this case, by definition of J we must
have 1 € A for some A € C. This is a contradiction because each A is a proper ideal
(A € C C §S). This proves that each chain has an upper bound in S. By Zorn’s Lemma
S has a maximal element which is therefore a maximal (proper) ideal containing /.

For commutative rings the next result characterizes maximal ideals by the structure
of their quotient rings.

Proposition 12. Assume R is commutative. Theideal M is a maximal idealif and only
if the quotient ring R/ M is a field.

Proof: This follows from the Lattice Isomorphism Theorem together with Proposi-
tion 9(2). The ideal M is maximal if and only if there are noideals I with M C I C R.
By the Lattice Isomorphism Theorem the ideals of R containing M correspond bijec-
tively with the ideals of R/M, so M is maximal if and only if the only ideals of R/M
are 0 and R/M. By Proposition 9(2) we see that M is maximal if and only if R/M is
a field.

The proposition above indicates how to construct some fields: take the quotient
of any commutative ring R with identity by a maximal ideal in R. We shall use this
in Part IV to construct all finite fields by taking quotients of the ring Z[x] by maximal
ideals.
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Examples

(1) Let n be a nonnegative integer. The ideal nZ of Z is a maximal ideal if and only if
Z/nZ is a field. We saw in Section 3 that this is the case if and only if n is a prime
number. This also follows directly from the containment of ideals of Z described in
Example 2 above.

(2) The ideal (2, x) is a maximal ideal in Z[x] because its quotient ring is the field Z/2Z
— cf. Example 3 above and Example S at the end of Section 3.

(3) Theideal (x) in Z[x] is not a maximal ideal because (x) C (2, x) C Z[x]. The quotient
ring Z[x]/(x) is isomorphic to Z (the ideal (x) in Z[x] is the kernel of the surjective
ring homomorphism from Z[x] to Z given by evaluation at 0). Since Z is not a field,
we see again that (x) is not a maximal ideal in Z[x].

(4) Let Rbetheringofall functions from [0,1] toR and for each a € [0, 1] let M, be the
kernel of evaluation at a. Since evaluation is a surjective homomorphism from R to
R, we see that R/M, = R and hence M, is a maximal ideal. Similarly, the kernel of
evaluation at any fixed point is a maximal ideal in the ring of continuous real valued
functions on [0, 1].

(5) If F is a field and G is a finite group, then the augmentation ideal I is a maximal
ideal of the group ring FG (cf. Example 7 at the end of the preceding section). The
augmentation ideal is the kernel of the augmentation map which is a surjective homo-
morphism onto the field F (i.e., FG/I = F, a field). Note that Proposition 12 does
not apply directly since FG need not be commutative, however, the implication in
Proposition 12 that I is a maximal ideal if R/[ is a field holds for arbitrary rings.

Definition. Assume R is commutative. An ideal P is called a prime ideal if P # R
and whenever the product ab of two elements a, b € R is an element of P, then at least
one of a and b is an element of P.

The notion of a maximal ideal is fairly intuitive but the definition of a prime ideal
may seem a little strange. It is, however, a natural generalization of the notion of a
“prime” in the integers Z. Let n be a nonnegative integer. According to the above
definition the ideal nZ is a prime ideal provided n # 1 (to ensure that the ideal is
proper) and provided every time the product ab of two integers is an element of nZ,
at least one of a, b is an element of nZ. Put another way, if n # 0, it must have the
property that whenever n divides ab, n must divide a or divide b. This is equivalent to
the usual definition that » is a prime number. Thus the prime ideals of Z are just the
ideals pZ of Z generated by prime numbers p together with the ideal 0.

For the integers Z there is no difference between the maximal ideals and the nonzero
prime ideals. This is not true in general, but we shall see shortly that every maximal
ideal is a prime ideal. First we translate the notion of prime ideals into properties of
quotient rings as we did for maximal ideals in Proposition 12. Recall that an integral
domain is a commutative ring with identity 1 3 0 that has no zero divisors.

Proposition 13. Assume R is commutative. Then the ideal P is a prime ideal in R if
and only if the quotient ring R/ P is an integral domain.

Proof: This proof is simply a matter of translating the definition of a prime ideal
into the language of quotients. The ideal P is prime if and only if P # R and whenever
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ab € P, then eithera € P or b € P. Use the bar notation for elements of R/P:
r =r + P. Note that r € P if and only if the element 7 is zero in the quotient ring
R/ P. Thus in the terminology of quotients P is a prime ideal if and only if R # 0and
whenever ab = ab = 0, then either @ = 0 or b = 0, i.e., R/ P is an integral domain.

It follows in particular that a commutative ring with identity is an integral domain
if and only if O is a prime ideal.

Corollary 14. Assume R is commutative. Every maximal ideal of R is a prime ideal.

Proof: If M is a maximal ideal then R/M is a field by Proposition 12. A field is
an integral domain so the corollary follows from Proposition 13.

Examples

(1) The principal ideals generated by primes in Z are both prime and maximal ideals. The
zero ideal in Z is prime but not maximal.

(2) Theideal (x) is a prime ideal in Z[x] since Z[x]/(x) = Z. This ideal is not a maximal
ideal. The ideal O is a prime ideal in Z[x], but is not a maximal ideal.

EXERCISES
Let R be a ring with identity 1 # 0.

1. LetL; be the leftideal of M,,(R) consisting of arbitrary entries in the j th column and zero
in all other entries and let E;; be the element of M,(R) whose i, Jj entry is 1 and whose
other entries are all 0. Prove that L; = M, (R)E;; for any i. [See Exercise 6, Section 2.]

2. Assume R is commutative. Prove that the augmentation ideal in the group ring RG is
generated by {g — 1 | g € G}. Provethatif G = (o) is cyclic then the augmentation ideal
is generated by o — 1.

3. (a) Let p be a prime and let G be an abelian group of order p". Prove that the nilradical
of the group ring I, G is the augmentation ideal (cf. Exercise 29, Section 3). [Use
the preceding exercise.]

(b) LetG = {gi, .- -, gn} be a finite group and assume R is commutative. Prove that if r
is any element of the augmentation ideal of RG thenr(g; + - - - + gn) = 0. [Use the
preceding exercise.]

4. Assume R is commutative. Prove that R is a field if and only if O is a maximal ideal.

5. Prove that if M is an ideal such that R/M is a field then M is a maximal ideal (do not
assume R is commutative).

6. Prove that Risadivisionringif and only ifitsonly leftideals are(0)and R. (The analogous
result holds when “left” is replaced by “right.”)

7. Let R be a commutative ring with 1. Prove that the principal ideal generated by x in the
polynomial ring R[x] is a prime ideal if and only if R is an integral domain. Prove that
(x) is a maximal ideal if and only if R is a field.

8. Let R be an integral domain. Prove that (a) = () for some elements a, b € R, if and only
if a = ub for some unit u of R.

9. Let R be thering of all continuous functions on [0, 1] and let I be the collection of functions
f(x) in R with f(1/3) = f(1/2) = 0. Prove that [ is an ideal of R but is not a prime
ideal.
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10. Assume R is commutative. Prove that if P is a prime ideal of R and P contains no zero
divisors then R is an integral domain.

11. Assume R is commutative. Let 7 and J be ideals of R and assume P is a prime ideal of R
that contains 7J (forexample, if P contains I N J). Prove either I or J is contained in P.

12. Assume R is commutative and suppose I = (a1, a2, ...,a,) and J = (b1, b2, ..., b,,) are
two finitely generated ideals in R. Prove that the product ideal 7J is finitely generated by
the elements @;bj fori =1,2,...,n,and j = 1.2,...,m.

13. Let ¢ : R — S be a homomorphism of commutative rings.

(a) Provethatif P is aprime ideal of S then either ¢~ 1(P) = Ror¢~1(P)is aprime ideal
of R. Apply this to the special case when R is a subring of S and ¢ is the inclusion
homomorphism to deduce that if P is a prime ideal of S then P N R is either R or a
prime ideal of R.

(b) Prove that if M is a maximal ideal of S and ¢ is surjective then ¢ ~1(M) is a maximal
ideal of R. Give anexample to show that this need not be the case if g is not surjective.

14. Assume R is commutative. Let x be an indeterminate, let f(x) be a monic polynomial
in R[x] of degree n > 1 and use the bar notation to denote passage to the quotient ring
RIx1/(f (x))- -

(a) Show that every element of R[x]/(f(x)) is of the form p(x) for some polynomial
p(x) € R[x] of degree less than n, i.e.,

RIx)/(f(x)) ={ag+ax+---+a,—1x" ' |ag,ay,...,a,—1 € R}.

[If f(x) =x" +b,_1x"" 1 4. 4+ bgthenx” = —(b,_1x"~! + - - - + bg). Use this
to reduce powers of x in the quotient ring.]

(b) Prove thatif p(x) and g(x) are distinct polynomials in R[x] which are both of degree
less than n, then p(x) # g(x). [Otherwise p(x) — g(x) is an R[x]-multiple of the
monic polynomial f(x).]

(c) If f(x) = a(x)b(x) where both a(x) and b(x) have degree less than n, prove that a(x)
is a zero divisorin R[x]/(f (x)).

(d) If f(x) = x" — a for some nilpotent element a € R, prove that X is nilpotent in
R[x]/(f(x)).

(e) Let p be a prime, assume R = F, and f(x) = x? — a for some a € Fj,. Prove that
x — a is nilpotent in R[x]/(f(x)). [Use Exercise 26(c) of Section 3.]

15. Let x% + x + 1 be an element of the polynomial ring E = F;[x] and use the bar notation
to denote passage to the quotient ring Fa[x]/ @ +x+1).
(a) Prove that E has 4 elements: 0, 1, ¥ and x + 1.
(b) Write out the 4 x 4 addition table for E and deduce that the additive group E is
isomorphic to the Klein 4-group.
(¢) Write out the 4 x 4 multiplication table for E and prove that E - is isomorphic to the
cyclic group of order 3. Deduce that E is a field.

16. Let x* — 16 be an element of the polynomial ring E = Z[x] and use the bar notation to
denote passage to the quotient ring Z[x]/(x* — 16).
(a) Find a polynomial of degree < 3 that is congruent to 7x!3 — 11x® 4+ 5x° — 2x3 4+ 3
modulo (x* — 16).
(b) Prove that x — 2 and x + 2 are zero divisors in E.

17. Letx3 —2x +1 be an element of the polynomial ring E = Z[x] and use the bar notation to
denote passage to the quotient ring Z[x]/(x3—2x+1). Let p(x) = 2x” -7x>+4x3—9x+1
and let g(x) = (x — 1)*.
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18.

19.

20.

21.

23

25.

26.

27.

28.

29

30.

31

(a) Express each of the following elements of E in the form f(x) for some polynomial
f(x) of degree < 2: p(x), q(x), p(x) +¢(x) and p(x)q(x).

(b) Prove that E is notan in&agral domain.

(c) Provethatx is aunitin E.
Prove that if R is an integral domain and R[[x]] is the ring of formal power series in the
indeterminate x then the principal ideal generated by x is a prime ideal (cf. Exercise 3,
Section 2). Prove that the principal ideal generated by x is a maximal ideal if and only if
R is afield.

Let R be a finite commutative ring with identity. Prove that every prime ideal of R is a
maximal ideal.
Prove that a nonzero finite commutative ring that has no zero divisors is a field (if the ring
has an identity, this is Corollary 3, so do not assume the ring has a 1).

Prove that a finite ring with identity 1 # O that has no zero divisors is a field (you may
quote Wedderburn’s Theorem).

. Let p € Z* be a prime and let the F,, Quaternions be defined by

a+bi+cj+dk a,b,c,d € Z/pZ

where addition is componentwise and multiplication is defined using the same relations

on i, j, k as for the real Quaternions.

(a) Prove that the I, Quaternions are a homomorphic image of the integral Quaternions
(cf. Section 1).

(b) Prove that the I, Quaternions contain zero divisors (and so they cannot be a division
ring). [Use the preceding exercise.]

Prove that in a Boolean ring (cf. Exercise 15, Section 1) every prime ideal is a maximal
ideal.

. Prove that in a Boolean ring every finitely generated ideal is principal.

Assume R is commutative and for each a € R there is an integer n > 1 (depending on a)
such that a” = a. Prove that every prime ideal of R is a maximal ideal.

Prove that a prime ideal in a commutative ring R contains every nilpotent element (cf.
Exercise 13, Section 1). Deduce that the nilradical of R (cf. Exercise 29, Section 3) is
contained in the intersection of all the prime ideals of R. (Itis shown in Section 15.2 that
the nilradical of R is equal to the intersection of all prime ideals of R.)

Let R be a commutative ring with 1 # 0. Prove that if a is a nilpotent element of R then
1 —abisa unitforallb € R.

Prove that if R is acommutativeringand N = (a, aa, ... ., a,,) where eacha; is a nilpotent
element, then N is anilpotentideal (cf. Exercise 37, Section 3). Deduce that if the nilradical
of R is finitely generated then it is a nilpotent ideal.

Let p be a prime and let G be a finite group of order a power of p (i.e., a p-group). Prove
that the augmentation ideal in the group ring Z/pZG is a nilpotent ideal. (Note that this
ring may be noncommutative.) [Use Exercise 2.]

Let I be an ideal of the commutative ring R and define
radl ={re R|r" eI forsomen € Z*)

called the radical of 1. Prove that rad [ is an ideal containing I and that (rad I)/I is the
nilradical of the quotient ring R/1, i.e., (rad I')/I = M(R/I) (cf. Exercise 29, Section 3).

An ideal I of the commutative ring R is called a radical ideal ifrad I = 1.
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32.

33.

(a) Prove that every prime ideal of R is a radical ideal.

(b) Let n > 1 be an integer. Prove that O is a radical ideal in Z/nZ if and only if n is a
product of distinct primes to the first power (i.e., n is square free). Deduce that (n) is
aradical ideal of Z if and only if n is a product of distinct primes in Z.

Let I be an ideal of the commutative ring R and define
Jac I to be the intersection of all maximal ideals of R that contain 7

where the convention is that Jac R = R. (If I is the zero ideal, Jac O is called the Jacobson
radical of the ring R, so Jac [ is the preimage in R of the Jacobson radical of R/1.)

(a) Prove that Jac / is an ideal of R containing /.

(b) Prove thatrad I C Jac I, where rad / is the radical of I defined in Exercise 30.

(c) Letn > 1 be an integer. Describe JacnZ in terms of the prime factorization of n.

Let R be the ring of all continuous functions from the closed interval [0,1] to R and for
eachc € [0,1]let M. = {f € R | f(c) = O} (recall that M. was shown to be a maximal
ideal of R).

(a) Provethatif M is any maximal ideal of R then there is a real number c¢ € [0, 1] such

that M = M.

(b) Provethat if b and c are distinct points in [0,1] then My, # M.

(c) Prove that M, is not equal to the principal ideal generated by x — c.

(d) Prove that M. is not a finitely generated ideal.

The preceding exercise shows that there is a bijection between the points of the closed interval
[0,1] and the set of maximal ideals in the ring R of all of continuous functions on [0,1] given
by ¢ <> M,. For any subset X of R or, more generally, for any completely regular topological
space X, the map ¢ — M., is an injection from X to the set of maximal ideals of R, where
R is the ring of all bounded continuous real valued functions on X and M, is the maximal
ideal of functions that vanish at c. Let B(X) be the set of maximal ideals of R. One can put
atopology on B8(X) in such a way that if we identify X with its image in (X) then X (in its
given topology) becomes a subspace of (X). Moreover, B(X) is a compact space under this
topology and is called the Stone-Cech compactification of X.

34.

3s.

36.

37.

38.

39.

Sec.

Let R be the ring of all continuous functions from R to R and for each ¢ € R let M, be

the maximal ideal {f € R| f(c) = 0}.

(a) Let I be the collection of functions f(x) in R with compact support (i.e., f(x) =0
for |x| sufficiently large). Prove that / is an ideal of R that is not a prime ideal.

(b) Let M be a maximal ideal of R containing / (properly, by (a)). Prove that M # M,
for any ¢ € R (cf. the preceding exercise).

Let A = (a1, ay, ..., a,) be a nonzero finitely generated ideal of R. Prove that there is

an ideal B which is maximal with respect to the property that it does not contain A. [Use

Zom’s Lemma.]

Assume R is commutative. Prove that the set of prime ideals in R has a minimal element

with respect to inclusion (possibly the zero ideal). [Use Zom’s Lemma.]

A commutative ring R is called a local ring if it has a unique maximal ideal. Prove that
if R is a local ring with maximal ideal M then every element of R — M is a unit. Prove
conversely that if R is a commutative ring with 1 in which the set of nonunits forms an
ideal M, then R is a local ring with unique maximal ideal M.

Prove that the ring of all rational numbers whose denominators is odd is a local ring whose
unique maximal ideal is the principal ideal generated by 2.

Following the notation of Exercise 26 in Section 1, let K be a field, let v be a discrete
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valuation on K and let R be the valuation ring of v. For each integer k > 0 define
Ar={r e R|v(@)>=k}U({0}
(@) Prove that A is a principal ideal and that Ag D A} D A2 D ---.
(b) Prove that if I is any nonzero ideal of R, then I = A for some k > 0. Deduce that
R is a local ring with unique maximal ideal A,.
40. Assume R is commutative. Prove that the following are equivalent: (see also Exercises
13 and 14 in Section 1)
() R has exactly one prime ideal
(ii) every element of R is either nilpotent or a unit
(iii) R/n(R) is a field (cf. Exercise 29, Section 3).
41. A proper ideal Q of the commutative ring R is called primary if whenever ab € Q and
a ¢ Q then b" € Q for some positive integer n. (Note that the symmetry between a and
b in this definition implies that if Q is a primary ideal and ab € Q with neither a nor b

in Q, then a positive power of a and a positive power of b both lie in Q.) Establish the
following facts about primary ideals.

(a) The primary ideals of Z are 0 and (p"), where p is a prime and n is a positive integer.
(b) Every prime ideal of R is a primary ideal.

(c) An ideal Q of R is primary if and only if every zero divisor in R/ Q is a nilpotent
element of R/Q.

(d) If Q isa primary ideal then rad(Q) is a prime ideal (cf. Exercise 30).

7.5 RINGS OF FRACTIONS

Throughout this section R is a commutative ring. Proposition 2 shows that if a is not
zeronor a zerodivisorand ab = ac in R then b = c. Thus a nonzero element that is not
a zero divisor enjoys some of the properties of a unit without necessarily possessing a
multiplicative inverse in R. On the other hand, we saw in Section 1 that a zero divisor
a cannot be a unit in R and, by definition, if a is a zero divisor we cannot always cancel
the a’s in the equation ab = ac to obtain b = c (take ¢ = O for example). The aim of
this section is to prove that a commutative ring R is always a subring of a larger ring
Q in which every nonzero element of R that is not a zero divisor is a unit in Q. The
principal application of this will be to integral domains, in which case this ring Q will
be a field — called its field of fractions or quotient field. Indeed, the paradigm for the
construction of Q from R is the one offered by the construction of the field of rational
numbers from the integral domain Z.

In order to see the essential features of the construction of the field Q from the
integral domain Z we review the basic properties of fractions. Each rational number

may be represented in many different ways as the quotient of two integers (for example,
1 2 3

216> etc.). These representations are related by

-=- ifandonly if  ad = bc.

. . _a., . .
In more precise terms, the fraction — is the equivalence class of ordered pairs (a, b)

of integers with b # 0 under the equivalence relation: (a, b) ~ (c, d) if and only if
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ad = bc. The arithmetic operations on fractions are given by

a,c ad + bc d a ¢ ac
= an - X = =—.
b d_ bd b d " bd
These are well defined (independent of choice of representatives of the equivalence
classes) and make the set of fractions into a commutative ring (in fact, a field), Q. The

a
integers Z are identified with the subring {T | a € Z} of Q and every nonzero integer

. 1.
a has an inverse — in Q.

It seems reas((l)nable to attempt to follow the same steps for any commutative ring
R, allowing arbitrary denominators. If, however, b is zero or a zero divisor in R, say
bd = 0, and if we allow b as a denominator, then we should expect to have

god_bd_0_
1 b b

in the “ring of fractions™ (where, for convenience, we have assumed R has a 1). Thus
if we allow zero or zero divisors as denominators there must be some collapsing in
the sense that we cannot expect R to appear naturally as a subring of this “ring of
fractions.” A second restriction is more obviously imposed by the laws of addition and
multiplication: if ring elements b and d are allowed as denominators, then bd must
also be a denominator, i.e., the set of denominators must be closed under multiplication
in R. The main result of this section shows that these two restrictions are sufficient to
construct a ring of fractions for R. Note that this theorem includes the construction of
Q from Z as a special case.

Theorem 15. Let R be a commutative ring. Let D be any nonempty subset of R that
does not contain 0, does not contain any zero divisors and is closed under multiplication
(i.e., ab € D for all @, b € D). Then there is a commutative ring Q with 1 such that
Q contains R as a subring and every element of D is a unit in Q. The ring Q has the
following additional properties.

(1) every element of Q is of the formrd~! forsomer € R andd € D. In particular,
if D = R — {0} then Q is a field.

(2) (uniqueness of Q) The ring Q is the “smallest” ring containing R in which all
elements of D become units, in the following sense. Let S be any commutative
ring with identity and let ¢ : R — S be any injective ring homomorphism
such that ¢(d) is a unit in S for every d € D. Then there is an injective
homomorphism ¢ : @ — S such that @|g = ¢. In other words, any ring
containing an isomorphic copy of R in which all the elements of D become
units must also contain an isomorphic copy of Q.

Remark: In Section 15.4 a more general construction is given. The proof of the general
result is more technical but relies on the same basic rationale and steps as the proof
of Theorem 15. Readers wishing greater generality may read the proof below and the
beginning of Section 15.4 in concert.

Proof: Let F = {(r,d) | r € R, d € D} and define the relation ~ on F by

(r,d) ~ (s, e) if and only if re =sd.
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It is immediate that this relation is reflexive and symmetric. Suppose (r,d) ~ (s, €)
and (s, e) ~ (¢, f). Then re — sd = 0 and sf — te = 0. Multiplying the first of these
equations by f and the second by d and adding them gives (rf — td)e = 0. Since
e € D is neither zero nor a zero divisor we musthave rf —td = 0, i.e., (r,d) ~ (¢, f).
This proves ~ is transitive, hence an equivalence relation. Denote the equivalence class

of (r, d) by :—l:
.

p {(@,b)|la€e R, be Dandrb = ad}.

Let Q be the set of equivalence classes under ~. Note that 2 = ;_e in Q foralle € D,
e

since D is closed under multiplication.
We now define an additive and multiplicative structure on Q:
a ¢ ad+bc a ¢ ac
bt3” "ba and X T ba
In order to prove that Q is acommutative ring with identity there are a number of things
to check:

(1) these operations are well defined (i.e., do not depend on the choice of representatives
for the equivalence classes),

0
(2) Qisan abelian group under addition, where the additive identity is yl foranyd € D

e . a. —a
and the additive inverse of — is —,

(3) multiplication is associative, distributive and commutative, and

d
(4) Q has an identity (= y for any d € D).

These are all completely straightforward calculations involving only arithmetic in
R and the definition of ~. Again we need D to be closed under multiplication for

addition and multiplication to be defined.
/

Forexample, to check that addition is well defined assume a_ ‘i, (i.e.,ab = a’'b)

/ d b /d/ bl /
and €= % (i.e., cd’ = c’d). We must show that a b-; c_¢ b’Z’ ¢ ,1.e.,

d
(ad + bo)(¥'d’) = (d'd' + b'c)(bad).

The left hand side of this equation is ab’dd’ + cd'bb’ substituting a’'b for ab’ and c'd
for cd’ gives a’bdd’ + c'dbb’, which is the right hand side. Hence addition of fractions
is well defined. Checking the details in the other parts of (1) to (4) involves even easier
manipulations and so is left as an exercise.

Next we embed R into Q by defining

d
t:R—>Q by Lir— % where d is any element of D.

d
Since ia = re for all d, e € D, «(r) does not depend on the choice of d € D. Since
e
D is closed under multiplication, one checks directly that ¢ is a ring homomorphism.
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Furthermore, ¢ is injective because

d 0
l(r):0<=>%=g¢>rd2=0<=>r=0
because d (hence also d?) is neither zero nor a zero divisor. The subring ((R) of Q is
therefore isomorphic to R. We henceforth identify eachr € R with¢(r) and so consider
R as a subring of Q.
Next note that each d € D has a multiplicative inverse in Q: namely, if d is

. de . . . e
represented by the fraction — thenits multiplicative inverse is T One then sees that
e e

every element of Q may be written as r - d~! for some r € R and some d € D. In
particular, if D = R — {0}, every nonzero element of Q has a multiplicative inverse and
QO is a field.

It remains to establish the uniqueness property of Q0. Assume ¢ : R — S is an
injective ring homomorphism such that ¢(d) is a unitin S foralld € D. Extend ¢ to a
map @ : Q — S by defining @(rd!) = ¢(r)¢p(d) ! forallr € R, d € D. This map
is well defined, since rd~! = se~! implies re = sd, s0 ¢(r)¢(e) = ¢(s)¢(d), and then

Q(rd™") = p(Ne(d) ™! = p(s)p(e) ™ = d(se™).

Itis straightforward to check that @ is a ring homomorphism — the details are left as an

exercise. Finally, @ is injective because rd~! € ker & implies r € ker & N R = ker g;
since ¢ is injective this forces r and hence also rd~! to be zero. This completes the
proof.

Definition. Let R, D and Q be as in Theorem 15.
(1) Thering Q is called the ring of fractions of D with respect to R and is denoted
D7!R.
(2) If R is an integral domain and D = R — {0}, Q is called the field of fractions
or quotient field of R.

If Aisasubsetofafield F (for example, if A is a subring of F'), then the intersection
of all the subfields of F containing A is a subfield of F and is called the subfield
generated by A. This subfield is the smallest subfield of F containing A (namely, any
subfield of F containing A contains the subfield generated by A).

The next corollary shows that the smallest field containing an integral domain R is
its field of fractions.

Corollary 16. Let R be an integral domain and let O be the field of fractions of R. If
afield F contains a subring R’ isomorphic to R then the subfield of F generated by R’
is isomorphic to Q.

Proof: Letgp : R = R’ C F be a (ring) isomorphism of R to R. In particular,
¢ : R — F is an injective homomorphism from R into the field F. Let® : Q — F be
the extension of ¢ to Q as in the theorem. By Theorem 15, @ is injective, so @ (Q) is an
isomorphic copy of Q in F containing ¢(R) = R’. Now, any subfield of F containing
R = ¢(R) contains the elements ¢(r)¢(r;) ! = o(riry ) for all r,,r, € R Since
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every element of Q is of the form ryr; forsomery, r» € R, it follows that any subfield
of F containing R’ contains the field @ (Q), so that @ (Q) is the subfield of F generated
by R’, proving the corollary.

Examples

@
()

3

If R is a field then its field of fractions is just R itself.

The integers Z are an integral domain whose field of fractions is the field Q of rational
numbers. The quadratic integer ring O of Section 1 is an integral domain whose field
of fractions is the quadratic field Q(/D).

The subring 2Z of Z also has no zero divisors (but has no identity). Its field of fractions
is also Q. Note how an identity “appears” in the field of fractions.

(4) If Ris any integral domain, then the polynomial ring R[x] is also an integral domain.

®

The associated field of fractions is the field of rational functions in the variable x

over R. The elements of this field are of the form &, where p(x) and g(x) are
x

polynomials with coefficients in R with g(x) not the zero polynomial. In particular,

p(x) and g(x) may both be constant polynomials, so the field of rational functions

contains the field of fractions of R: elements of the form a such that a, b € R and

b # 0. If F is a field, we shall denote the field of rational functions by F(x). Thus if
F is the field of fractions of the integral domain R then the field of rational functions
over R is the same as the field of rational functions over F, namely F(x).

For example, suppose R = Z, so F = Q. If p(x), g(x) are polynomials in
Q[x] then for some integer N, Np(x), Ng(x) have integer coefficients (let N be a
common denominator for all the coefficients in p(x) and g(x), for example). Then
p&x) _ Npx)
q(x)  Nq(x)
efficients, so the field of fractions of (Q[x] is the same as the field of fractions of
Z[x].

If R is any commutative ring with identity and d is neither zero nor a zero divisor in R
we may form the ring R[1/d] by setting D = {1, d, d%,d3,...}and defining R[1/d]
to be the ring of fractions D! R. Note that R is the subring of elements of the form

r . . .. . .
I In this way any nonzero element of R that is not a zero divisor can be inverted in

a larger ring containing R. Note that the elements of R[1/d]look like polynomials in
1/d with coefficients in R, which explains the notation.

can be written as the quotient of two polynomials with integer co-

EXERCISES

Let R be a commutative ring with identity 1 # 0.
1. Fill in all the details in the proof of Theorem 15.

2. Let R be an integral domain and let D be a nonempty subset of R that is closed under
multiplication. Prove that the ring of fractions DR is isomorphic to a subring of the
quotient field of R (hence is also an integral domain).

3. Let F be a field. Prove that F contains a unique smallest subfield Fp and that Fy is
isomorphic to either Q or Z/pZ for some prime p (Fp is called the prime subfield of F).
[See Exercise 26, Section 3.]

4. Prove that any subfield of R must contain Q.
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S. If F is a field, prove that the field of fractions of F[[x]] (the ring of formal power series in
the indeterminate x with coefficients in F) is the ring F((x)) of formal Laurent series (cf.
Exercises 3 and 5 of Section 2). Show the field of fractions of the power series ring Z[[x]]
is properly contained in the field of Laurent series Q((x)). [Consider the series for *.]

6. Prove that the real numbers, R, contain a subring A with 1 € A and A maximal (under
inclusion) with respect to the property that % ¢ A [Use Zom’s Lemma.] (Exercise 13
in Section 15.3 shows R is the quotient field of A, so R is the quotient field of a proper
subring.)

7.6 THE CHINESE REMAINDER THEOREM

Throughout this section we shall assume unless otherwise stated that all rings are com-
mutative with an identity 1 # 0.

Given an arbitrary collection of rings (not necessarily satisfying the conventions
above), their (ring) direct product is defined to be their direct product as (abelian) groups
made into a ring by defining multiplication componentwise. In particular, if R; and R,
are two rings, we shall denote by R; x R, their direct product (as rings), that is, the set
of ordered pairs (ry, r;) with ry € R, and r, € R, where addition and multiplication
are performed componentwise:

(r,r2) +(s1.82) = (1 +s1,r2+52)  and (11, 12)(51, 52) = (151, 7252).
We note that a map ¢ from a ring R into a direct product ring is a homomorphism if
and only if the induced maps into each of the components are homomorphisms.

There is a generalization to arbitrary rings of the notion in Z of two integers n and
m being relatively prime (even to rings where the notion of greatest common divisor is
not defined). In Z this is equivalent to being able to solve the equation nx + my = 1
in integers x and y (this fact was stated in Chapter 0 and will be proved in Chapter 8).
This in turn is equivalent to nZ + mZ = Z as ideals (in general, nZ + mZ = (m, n)Z).
This motivates the following definition:

Definition. The ideals A and B of the ring R are said to be comaximal if A+ B = R.

Recall that the product, AB, of the ideals A and B of R is the ideal consisting of all
finite sums of elements of the form xy, x € A and y € B (cf. Exercise 34, Section 3).
If A = (a) and B = (b), then AB = (ab). More generally, the product of the ideals
Ay, Ay, ..., Ay is the ideal of all finite sums of elements of the form x;x; - - - x; such
that x; € A; foralli. If A; = (a;),then Ay - - - Ay = (a; - - - ay).

Theorem 17. (Chinese Remainder Theorem) Let Ay, A,, ..., A be ideals in R. The
map
R—> R/A1XR/A;x---xR/Ay defined by r— (r+Ap,r+As,...,r+Ap)

is aring homomorphism with kermel A} N A, N---N A;. Ifforeachi, j € {1,2,...,k}
with i # j the ideals A; and A; are comaximal, then this map is surjective and
AlNAN---NAy=A1Az- -+ Ay, SO

R/(A[Az---Ak)=R/(A]nAzn'--nAk)gR/Al X R/A2 X e X R/Ak.
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Proof: We first prove this for k = 2; the general case will follow by induction.
Let A = A; and B = A;. Consider the map ¢ : R &> R/A x R/B defined by
¢(r) = (r mod A, r mod B), where mod A means the class in R/ A containing r (that
is, r + A). This map is a ring homomorphism because ¢ is just the natural projection
of R into R/A and R/B for the two components. The kernel of ¢ consists of all the
elements r € R that are in A and in B, i.e., A N B. To complete the proof in this case it
remains to show that when A and B are comaximal, ¢ is surjectiveand AN B = AB.
Since A + B = R, there are elements x € A and y € B such that x + y = 1. This
equation shows that ¢(x) = (0, 1) and ¢(y) = (1, 0) since, for example, x is an element
of Aandx =1—y € 1+ B. If now (r; mod A, r, mod B) is an arbitrary element in
R/A x R/ B, then the element r2x + r;y maps to this element since

p(rax + ry) = @(r2)e) + o(r)e(y)
= (r mod A, r, mod B)(0, 1) + (r; mod A, r; mod B)(1, 0)
= (0,r, mod B) + (r; mod A, 0)
= (ry mod A, r, mod B).

This shows that ¢ is indeed surjective. Finally, the ideal AB is always contained in
A N B. If A and B are comaximal and x and y are as above, then for any c € A N B,
¢ = cl = cx +cy € AB. This establishes the reverse inclusion AN B € AB and
completes the proof when k = 2.

The general case follows easily by induction from the case of two ideals using
A= Ajand B = A; - - - A, once we show that A; and A, - - - A; are comaximal. By
hypothesis, for eachi € {2, 3, ..., k} there are elements x; € A; and y; € A; such that
x; +y;i = 1. Since x; + y; = y; mod Ay, it follows that 1 = (x; + y2) - - - (xx + yi) 18
an elementin A; + (A7 - - - Ax). This completes the proof.

This theorem obtained its name from the special case Z/mnZ = (Z/mZ) x (Z/nZ.)
as rings when m and n are relatively prime integers. We proved this isomorphism just
for the additive groups earlier. This isomorphism, phrased in number-theoretic terms,
relates to simultaneously solving two congruences modulo relatively prime integers
(and states that such congruences can always be solved, and uniquely). Such problems
were considered by the ancient Chinese, hence the name. Some examples are provided
in the exercises.

Since the isomorphism in the Chinese Remainder Theorem is an isomorphism of
rings, in particular the groups of units on both sides must be isomorphic. It is easy to
see that the units in any direct product of rings are the elements that have units in each

of the coordinates. In the case of Z/mnZ the Chinese Remainder Theorem gives the
following isomorphism on the groups of units:

(Z/mnZ)* = (Z/mZ)y* x (Z/nZ)*.
More generally we have the following result.
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Corollary 18. Let n be a positive integer and let p;* p,°2 ... p;* be its factorization
into powers of distinct primes. Then

Z/nZ = (Z) ;1™ Z) x (Z/ p2®™Z) % - - - x (Z/pk™ Z),
as rings, soin particular we have the following isomorphism of multiplicative groups:

@Z/nZ)* = Z/ ;D) x (Z/p2™ L) x --- x (Z] p™2)*.

If we compare orders on the two sides of this last isomorphism, we obtain the
formula

o) = e(p1™)e(P2") . .. (™)

for the Euler ¢-function. This in turn implies that ¢ is what in elementary number
theory is termed a multiplicative function, namely that ¢(ab) = ¢(a)p(b) whenever a
and b are relatively prime positive integers. The value of ¢ on prime powers p“ is easily
seen to be (p%) = p®~!(p — 1) (cf. Chapter 0). From this and the multiplicativity of
¢ we obtain its value on all positive integers.

Corollary 18 is also a step toward a determination of the decomposition of the
abelian group (Z/nZ)* into a direct product of cyclic groups. The complete structure
is derived at the end of Section 9.5.

EXERCISES

Let R be a ring with identity 1 # 0.

1. An element e € R is called an idempotent if e = e. Assume e is an idempotent in R and
er = re for all r € R. Prove that Re and R(1 — e) are two-sided ideals of R and that
R = Re x R(1 — ). Show that e and 1 — e are identities for the subrings Re and R(1 — e)
respectively.

2. Let R be a finite Boolean ring with identity 1 # O (cf. Exercise 15 of Section 1). Prove
that R = Z/27 x - - - x Z/27Z. [Use the preceding exercise.]

3. Let R and S berings with identities. Prove that every idealof R x S is of the form I x J
where I is an ideal of R and J is an ideal of S.

4. Prove thatif R and S are nonzero rings then R x S is never a field.

S. Letny, na, ..., n; beintegers which are relatively prime inpairs: (n;, nj) = 1forall i # j.
(a) Show that the Chinese Remainder Theorem implies that for any ay, . .., ax € Z there
is a solution x € Z to the simultaneous congruences

x =aj; modng , x=aymodny, ..., x=a modng

) and that the solution x is unique mod n = nyn; ... ng.
(b) Letn] = n/n; bethe quotient of n by n;, whichis relatively prime to n; by assumption.
Let t; be the inverse of n] mod n;. Prove that the solution x in (a) is given by

x = aiyn}] + astan + - - - + agtyny, mod n.

Note that the elements #; canbe quickly found by the Euclidean Algorithm as described
in Section 2 of the Preliminaries chapter (writing an; + bn; = (n;,n}) = 1 gives
t; = b) and that these then quickly give the solutions to the system of congruences
above for any choice of a1, ay, . . ., ak.
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(¢) Solve the simultaneous system of congruences
x=1mod8, x=2mod25, and x =3 mod S8l
and the simultaneous system

y=5mod8, y=12mod25, and y =47 mod81.

6. Let f1(x), f2(x), ..., fr(x) be polynomials with integer coefficients of the same degree
d. Letny, ny, ..., ng be integers which are relatively prime in pairs (i.e., (n;, nj) = 1 for
all i # j). Use the Chinese Remainder Theorem to prove there exists a polynomial f(x)
with integer coefficients and of degree d with

f&x)= fikx) modny , f@) = fax)modny, ..., f(x)= fu(x) modng

i.e., the coefficients of f(x) agree with the coefficients of f;(x) mod n;. Show that if all
the f; (x) are monic, then f(x) may also be chosen monic. [Apply the Chinese Remainder
Theorem in Z to each of the coefficients separately.]

7. Let m and n be positive integers with n dividing m. Prove that the natural surjective ring
projection Z/mZ — Z./nZ is also surjective on the units: (Z/mZ)* — (Z/nZ)*.

The next four exercises develop the concept of direct limits and the “dual” notion of inverse
limits. In these exercises I is a nonempty index set with a partial order < (cf. Appendix I). For
each i € I let A; be an additive abelian group. In Exercise 8 assume also that 7 is a directed
set: forevery i, j € I thereis some k € I withi <k and j <k.

8. Suppose for every pair of indices i, j with i < j thereis amap p;; : A; = A; such that
the following hold:

i. pjk o pij = pix wheneveri < j < k, and
il. pij = 1foralliel.
Let B bethe disjoint union of all the A;. Define a relation ~ on B by

a ~ b if and only if there exists k with i, j < k and pjx(a) = pjk(b),

fora € A; and b € A;.

(a) Show that ~ is an equivalence relation on B. (The set of equivalence classes is called
the direct or inductive limit of the directed system {A;}, and is denoted lim A; . In the
remaining parts of this exercise let A = lim A;.)

(b) Let x denote the class of x in A and define p; : A; — A by p;(a) = a. Show that
if each p;; is injective, then so is p; for all i (so we may then identify each A; as a
subset of A).

(c) Assumeall p;; are group homomorphisms. Fora € A;, b € A jshow that the operation

a+ b = pik(a) + pjk(b)

where k is any index with i, j < k, is well defined and makes A into an abelian group.
Deduce that the maps p; in (b) are group homomorphisms from A; to A.

(d) Show thatifall A; are commutative rings with 1 and all p;; are ring homomorphisms
that send 1 to 1, then A may likewise be given the structure of a commutative ring
with 1 such that all p; are ring homomorphisms.

(e) Under the hypotheses in (c) prove that the direct limit has the following universal
property: if C is any abelian group such that foreach i € I there is a homomorphism
@i : A; > C withg; = gjop;j wheneveri < j, thenthere is a unique homomorphism
@ : A > Csuchthat g o p; = ¢; forall i.
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9. Let I be the collection of open intervals U = (a, b) on the real line containing a fixed real
number p. Order these by reverseinclusion: U < V if V C U (note that I is adirected set).
Foreach U let Ay be the ring of continuous real valued functions on U. For V C U define
the restriction maps pyy : Ay = Ay by f — flv, the usual restriction of a function on
U to a function on the subset V (which is easily seen to be a ring homomorphism). Let
A = lip Ay be the direct limit. In the notation of the preceding exercise, show that the
maps py : Ay — A are not injective but are all surjective (A is called the ring of germs
of continuous functions at p).

We now develop the notion of inverse limits. Continue to assume / is a partially ordered set
(but not necessarily directed), and A; is a groupforalli € I.

10. Suppose for every pair of indices i, j withi < j thereis amap uj; : Aj = A; such that
the following hold:
i. wji o prj = pii wheneveri < j <k, and
ii. w;; = 1foralli e I.

Let P be the subset of elements (a; );7 in the direct product [ |; <, A; such that uj;(aj) = a;

wheneveri < j (here g; and g; are the i and j components respectively of the element

in the direct product). The set P is called the inverse or projective limit of the system {A;},

and is denoted lim A;.)

(a) Assume all p;j; are group homomorphisms. Show that P is a subgroup of the direct
product group (cf. Exercise 15, Section 5.1).

(b) Assume the hypotheses in (a), and let = Z™ (usual ordering). For eachi € I let
wi : P — A; be the projection of P onto its i component. Show that if each ji is
surjective, then so is w; for all i (so each A; is a quotient group of P).

(c¢) Show that if all A; are commutative rings with 1 and all u;; arering homomorphisms
that send 1 to 1, then A may likewise be given the structure of a commutative ring
with 1 such that all y; are ring homomorphisms.

(d) Under the hypotheses in (a) prove that the inverse limit has the following universal
property: if D is any group such that for each i € I there is a homomorphism
7 : D — A; withm; = pjiomj wheneveri < j, thenthereis auniquehomomorphism
7 : D — P suchthat u; om = m; foralli.

11. Let pbeaprimelet I = Zt, let A; = Z/p'Z and let wj; be the natural projection maps
wji : a (mod p/) —> a(mod p').

The inverse limit lim Z/ P'Z is called the ring of p-adic integers, and is denoted by Zy.

(a) Show that every element of Z,, may be written uniquely as an infinite formal sum
170+b1p+b2p2 +b3p3 +---witheach b; € {0, 1, ..., p—1}. Describe the rules for
adding and multiplying such formal sums corresponding to addition and multiplication
in the ring Zp,. [Write a least residue in each Z/ P’ Zin its base p expansion and then
describe the maps uj;.] (Note in particular that Z,, is uncountable.)

(b) Prove that Z,, is an integral domain that contains a copy of the integers.

(c) Provethatby+b1p+ b2p2 +b3p3+---asin(a)is aunitin Z,, if and only if by # 0.

(d) Prove that pZj, is the unique maximal ideal of Z, and Z,/pZ, = Z/pZ (where
p=0+1p+0p? +0p3 +- - -). Prove that every ideal of Zp is of the form p"Z,
for some integer n > 0.

(e) Show that if a1 # 0 (mod p) then there is an element a = (a;) in the direct limit Z,,
satisfying a;’ =1 (mod p’) and p;ji1(aj) = a for all j. Deduce that Z, contains
p — 1 distinct (p — 1) roots of 1.
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CHAPTER 8

Euclidean Domains,
Principal Ideal Domains,
and Unique Factorization Domains

There are a number of classes of rings with more algebraic structure than generic
rings. Those considered in this chapter are rings with a division algorithm (Euclidean
Domains), rings in which every ideal is principal (Principal Ideal Domains) and rings in
which elements have factorizations into primes (Unique Factorization Domains). The
principal examples of such rings are the ring Z of integers and polynomial rings F[x]
with coefficients in some field F. We prove here all the theorems on the integers Z
stated in the Preliminaries chapter as special cases of results valid for more general
rings. These results will be applied to the special case of the ring F[x] in the next
chapter.
All rings in this chapter are commutative.

8.1 EUCLIDEAN DOMAINS

We first define the notion of a norm on an integral domain R. This is essentially no
more than a measure of “size” in R.

Definition. Any function N : R — Z* U {0} with N(0) = 0 is called a norm on the
integral domain R. If N(a) > O for a # 0 define N to be a positive norm.

We observe that this notion of a norm is fairly weak and that it is possible for the
same integral domain R to possess several different norms.

Definition. The integral domain R is said to be a Euclidean Domain (or possess a
Division Algorithm) if there is a norm N on R such that for any two elements a and b
of R with b # O there exist elements g and r in R with

a=qgb+r withr =0or N(r) < N(b).

The element g is called the quotient and the element r the remainder of the division.
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The importance of the existence of a Division Algorithm on an integral domain R
is that it allows a Euclidean Algorithm for two elements a and b of R: by successive
“divisions” (these actually are divisions in the field of fractions of R) we can write

a=qob+ro (0)]
b=qro+n 1
ro =¢qar1 +n; 2
Tn—2 = Gnrn—1+"n (n)
Tn—1 = gn+17n (n+1)

where r, is the last nonzero remainder. Such an r, exists since N(b) > N(rg) >
N(r;) > --- > N(r,) isadecreasing sequence of nonnegative integers if the remainders
are nonzero, and such a sequence cannot continue indefinitely. Note also that there is
no guarantee that these elements are unique.

Examples

()

@

@

Fields are trivial examples of Euclidean Domains where any norm will satisfy the
defining condition (e.g., N (a) = Ofor all a). This is because forevery a, b with b # 0
we have a = gb + 0, where ¢ = ab™ 1.

The integers Z are a Euclidean Domain with norm given by N(a) = |a|, the usual
absolutevalue. Theexistence of a DivisionAlgorithm in Z (the familiar “long division”
of elementary arithmetic) is verified as follows. Let a and b be two nonzero integers
and suppose first that b > 0. The half open intervals [nb, (n+1)b), n € Z partition
the real line and so a is in one of them, say a € [kb, (k+1)b). For ¢ = k we have
a—gb=r€|0,|b]) as needed. If b < 0 (so —b > 0), by what we have just seen
there is an integer ¢ such that a = g(—b) + r with eitherr = O or |r| < | — b]; then
a = (—q)b + r satisfies the requirements of the Division Algorithm for a and b. This
argument can be made more formal by using induction on |a|.

Note that if a is not a multiple of b there are always two possibilities for the

pair g, r: the proof above always produced a positive remainder r. If for example
b > 0 and g, r are as above withr > 0, then a = ¢'b+r’ with ¢ = g + 1 and
¥ = r — b also satisfy the conditions of the Division Algorithm applied to a, b. Thus
5=2-2+1=23-2—1 are the two ways of applying the Division Algorithm in Z to
a =5 and b = 2. The quotient and remainder are unique if we require the remainder
to be nonnegative.
If F is a field, then the polynomial ring F[x] is a Euclidean Domain with norm
given by N(p(x)) = the degree of p(x). The Division Algorithm for polynomials is
simply “long division” of polynomials which may be familiar for polynomials with
real coefficients. The proof is very similar to that for Z and is given in the next chapter
(although for polynomials the quotient and remainder are shown to be unique). In
order for a polynomial ring to be a Euclidean Domain the coefficients must come from
a field since the division algorithm ultimately rests on being able to divide arbitrary
nonzero coefficients. We shall prove in Section 2 that R[x] is not a Euclidean Domain
if R is not a field.

(3) The quadratic integer rings O in Section 7.1 are integral domains with a norm defined

Sec. 8.1

by the absolute value of the field norm (to ensure the values taken are nonnegative;
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when D < 0 the field norm is itself a norm), but in general O is not Euclidean with
respect to this norm (orany other norm). The Gaussian integers Z[i] (where D = —1),
however, are a Euclidean Domain with respect to the norm N (a + bi) = a? + b2, as
we now show (cf. also the end of Section 3).

Leta = a +bi, B = ¢+ di be two elements of Z[i] with 8 # 0. Then in the field

Q@) we have o _ r +si wherer = (ac+ bd)/(c2 +d?) ands = (bc —ad)/(c? +d?)

are rational numbers. Let p be an integer closest to the rational number r and let g be
an integer closest to the rational number s, so that both |r — p| and |s — g| are at most
1/2. The Division Algorithm follows immediately once we show

a=(p+qi)p+y forsome y € Z[i]with N(y) < %N(ﬂ)

which is even stronger than necessary. Let 6 = (r — p) + (s — q)i and set y = B6.
Theny = a¢—(p+qi)B,sothaty € Z[i]isaGaussianintegerande = (p+qi)B+y.
Since N(6) = (r — p)® + (s — g)? isat most 1/4 + 1/4 = 1/2, the multiplicativity of

the norm N implies that N(y) = N(@)N(B) < %N (B) as claimed.

Note that the algorithm is quite explicit since a quotient p + gi is quickly deter-
mined from the rational numbers r and s, and then the remainder y = a — (p + qi)B8
is easily computed. Note also that the quotient need not be unique: if r (or s) is half
of an odd integer then there are two choices for p (or for g, respectively).

This proof that Z[i] is a Euclidean Domain can also be used to show that O
is a Euclidean Domain (with respect to the field norm defined in Section 7.1) for
D = -2, -3, -7, —11 (cf. the exercises). We shall see shortly that Z[+/—5] is not
Euclidean with respect to any norm, and a proof that Z[(1 + +/—19)/2] is not a
Euclidean Domain with respect to any norm appears at the end of this section.

(4) Recall (cf. Exercise 26 in Section 7.1) that a discrete valuation ring is obtained as
follows. Let K be a field. A discrete valuation on K is a function v : K* — Z
satisfying

(i) v(ab) = v(a)+ v(d) (i.e., v is a homomorphism from the multiplicative group of

nonzero elements of K to Z),

(i) v is surjective, and

(iii) v(x +y) > min{v(x), v(y)} forall x, y € K> with x + y # 0.

The set {x € K™ | v(x) > 0} U {0} is a subring of K called the valuation ring of v.
An integral domain R is called a discrete valuation ring if there is a valuation v on its
field of fractions such that R is the valuation ring of v.

For example the ring R of all rational numbers whose denominators are relatively
prime to the fixed prime p € Z is a discrete valuation ring contained in Q.

A discrete valuation ring is easily seen to be a Euclidean Domain with respect
to the norm defined by N(0) = 0 and N = v on the nonzero elements of R. This is
because fora, b € R with b # 0
(@) f N < N(b)thena =0-b + a, and
(b) if N(@) > N(b) then it follows from property (i) of a discrete valuation that

g=ab~ ' € R,soa=qb+0.

The first implication of a Division Algorithm for the integral domain R is that it
forces every ideal of R to be principal.
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Proposition 1. Every ideal in a Euclidean Domain is principal. More precisely, if I is
any nonzero ideal in the Euclidean Domain R then I = (d), where d is any nonzero
element of / of minimum norm.

Proof: If 1 is the zero ideal, there is nothing to prove. Otherwise let d be any
nonzero element of I of minimum norm (such a d exists since the set {N(a) | a € I}
has a minimum element by the Well Ordering of Z). Clearly (d) C I since d is an
element of I. To show the reverse inclusion let a be any element of I and use the
Division Algorithm to write a = gd +r withr =0or N(r) < N(d). Thenr = a —qd
and both a and gd are in I, so r is also an element of I. By the minimality of the norm
of d, we see that r must be 0. Thus a = gd € (d) showing I = (d).

Proposition 1 shows that every ideal of Z is principal. This fundamental property
of Z was previously determined (in Section 7.3) from the (additive) group structure of
Z, using the classification of the subgroups of cyclic groups in Section 2.3. Note that
these are really the same proof, since the results in Section 2.3 ultimately relied on the
Euclidean Algorithm in Z.

Proposition 1 can also be used to prove that some integral domains R are not
Euclidean Domains (with respect to any norm) by proving the existence of ideals of R
that are not principal.

|
Examples AN

(1) Let R = Z[x]: Since the ideal (2, x) is not principal (cf. Example 3 at the beginning
of Section 7.4), it follows that the ring Z[x] of polynomials with integer coefficients
is not a Euclidean Domain (for any choice of norm), even though the ring Q[x] of
polynomials with rational coefficients is a Euclidean Domain.

(2) Let R be the quadratic integer ring Z[+~/—51], let N be the associated field norm
N(a+bv/=5) = a*+5b? and consider the ideal I = (3, 2++/—5 ) generated by 3 and
2+4+/=5. Suppose I = (a+b+/=5), a, b € Z, were principal, i.e., 3 = a(a+b+/=5)
and 24++/—5 = B(a + b+/—5) for some @, B € R. Taking norms in the first equation
gives 9 = N(a)(a? + 5b?) and since a® + 5b? is a positive integer it must be 1,3 or 9.
If the value is 9 then N(e) = 1 anda = %1, so a + b+/—5 = %3, which is impossible
by the second equation since the coefficients of 2+4+/—5 are not divisible by 3. The
value cannot be 3 since there are no integer solutions to a? 4 5b% = 3. If the valueiis 1,
then a +b+/—5 = 1 and the ideal I would be the entire ring R. But then 1 would be
an element of 1, so 3y + (24++/—5)8 = 1 for some y, § € R. Multiplying both sides
by 2—+/=5 would then imply that 2—+/—5 is a multiple of 3 in R, a contradiction. It
follows that I is not a principal ideal and so R is not a Euclidean Domain (with respect
to any norm).

One of the fundamental consequences of the Euclidean Algorithm in Z is that it
produces a greatest common divisor of two nonzero elements. This is true in any
Euclidean Domain. The notion of a greatest common divisor of two elements (if it
exists) can be made precise in general rings.
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Definition. Let R be acommutativering and leta, b € R with b # 0.
(1) a is said to be a multiple of b if there exists an element x € R witha = bx. In
this case b is said to divide a or be a divisor of a, written b | a.
(2) A greatest common divisor of a and b is a nonzero element d such that
() d|aandd | b, and
@ii) ifd’ |aandd’ | bthend’ | d.
A greatest common divisor of a and b will bedenoted by g.c.d.(a, b), or (abusing
the notation) simply (a, b).

Note that b | a in aring R if and only if a € (b) if and only if (a) € (b). In
particular, if d is any divisor of both a and b then (d) must contain both a and b and
hence must contain the ideal generated by a and b. The defining properties (i) and (ii)
of a greatest common divisor of a and b translated into the language of ideals therefore
become (respectively):

if I is the ideal of R generated by a and b, then d is a greatest common divisor of
a and b if

(i) I is contained in the principal ideal (d), and
(ii) if (d’) is any principal ideal containing / then (d) < (d’).

Thus a greatest common divisor of a and b (if such exists) is a generator for the uque
smallest principal ideal containing a and b. There are rings in which greatest common
divisors do not exist.

This discussion immediately gives the following sufficient condition for the exis-
tence of a greatest common divisor.

Proposition 2. If a and b are nonzero elements in the commutative ring R such that the
ideal generated by a and b is a principal ideal (d), then d is a greatest common divisor
of a and b.

This explains why the symbol (a, b) is often used to denote both the ideal generated
by a and b and a greatest common divisor of a and b. An integral domain in which
every ideal (a, b) generated by two elements is principal is called a Bezout Domain.
The exercises in this and subsequent sections explore these rings and show that there
are Bezout Domains containing nonprincipal (necessarily infinitely generated) ideals.

Note that the condition in Proposition 2 is not a necessary condition. For example,
in the ring R = Z[x] the elements 2 and x generate a maximal, nonprincipal ideal (cf.
the examples in Section 7.4). Thus R = (1) is the unique principal ideal containing
both 2 and x, so 1 is a greatest common divisor of 2 and x. We shall see other examples
along these lines in Section 3.

Before returning to Euclidean Domains we examine the uniqueness of greatest
common divisors.

Proposition 3. Let R be an integral domain. If two elements d and d’ of R generate the
same principal ideal, i.e., (d) = (d’), then d’ = ud for some unit « in R. In particular,

if d and d’ are both greatest common divisors of a and b, then d' = ud for some unit u.
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Proof: This is clear if either d or d’ is zero so we may assume d and d’ are nonzero.
Since d € (d’) there is some x € R such thatd = xd’. Since d’ € (d) there is some
y € Rsuchthatd’ = yd. Thusd = xyd andsod(1 — xy) = 0. Sinced # 0, xy =1,
that is, both x and y are units. This proves the first assertion. The second assertion
follows from the first since any two greatest common divisors of a and b generate the
same principal ideal (they divide each other).

One of the most important properties of Euclidean Domains is that greatest common
divisors always exist and can be computed algorithmically.

Theorem 4. Let R be a Euclidean Domain and let a and b be nonzero elements of
R. Let d = r, be the last nonzero remainder in the Euclidean Algorithm for a and b
described at the beginning of this chapter. Then
(1) d is a greatest common divisor of a and b, and
(2) the principal ideal (d) is the ideal generated by a and b. In particular, d can be
written as an R-linear combination of a and b, i.e., there are elements x and y
in R such that
d = ax + by.

Proof: By Proposition 1, the ideal generated by a and b is principal so a, b do have
a greatest common divisor, namely any element which generates the (principal) ideal
(a, b). Both parts of the theorem will follow therefore once we show d = r,, generates
this ideal, i.e., once we show that
() d|aandd | b (so (a,b) C (d))

(ii) d is an R-linear combination of a and b (so (d) C (a, b)).

To prove that d divides both a and b simply keep track of the divisibilities in the
Euclidean Algorithm. Starting from the (n+1)* equation, r,_; = gn4+17n, We see that
I'n | rp—1. Clearly r, | r,. By induction (proceeding from index n downwards to index
0) assume r, divides rx4; and ry. By the (k+1)* equation, r,_; = gg417% + rx41, and
since r,, divides both terms on the right hand side we see that r,, also divides r;_;. From
the 1% equation in the Euclidean Algorithm we obtain that r,, divides b and then from
the 0% equation we get that r,, divides a. Thus (i) holds.

To prove that r, is in the ideal (a, b) generated by a and b proceed similarly by
induction proceeding from equation (0) to equation (n). It follows from equation (0)
thatry € (a, b) and by equation (1) thatr; = b— q,r¢ € (b, rp) < (a, b). By induction
assume ry_j, ry € (a, b). Then by the (k+1)* equation

Tk41 = Te—1 — Gry17% € (N1, 1) < (a, b).
This induction shows r,, € (a, b), which completes the proof.

Much of the material above may be familiar from elementary arithmetic in the case
of the integers Z, except possibly for the translation into the language of ideals. For
example, if a = 2210 and b = 1131 then the smallest ideal of Z that contains both a
and b (the ideal generated by a and b) is 13Z, since 13 is the greatest common divisor
of 2210 and 1131. This fact follows quickly from the Euclidean Algorithm:

2210=1-1131+ 1079
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1131 =1-1079 + 52
1079 =20- 52 + 39
52=1-39+13

39=3-13

so that 13 = (2210, 1131) is the last nonzero remainder. Using the procedure of
Theorem 4 we can also write 13 as a linear combination of 2210 and 1131 by first
solving the next to last equation above for 13 = 52 — 1 - 39, then using previous
equations to solve for 39 and 52, etc., finally writing 13 entirely in terms of 2210 and
1131. The answer in this case is

13 = (—22) - 2210+ 43 - 1131.

The Euclidean Algorithm in the integers Z is extremely fast. It is a theorem that
the number of steps required to determine the greatest common divisor of two integers
a and b is at worst 5 times the number of digits of the smaller of the two numbers.
Put another way, this algorithm is logarithmic in the size of the integers. To obtain an
appreciation of the speed implied here, notice that for the example above we would
have expected at worst 5 - 4 = 20 divisions (the example required far fewer). If we had
started with integers on the order of 10'® (large numbers by physical standards), we
would have expected at worst only 500 divisions.

There is no uniqueness statement for the integers x and y in (a, b) = ax + by.
Indeed, x’ = x + b and y' = y — a satisfy (a,b) = ax’ + by’. This is essentially
the only possibility — one can prove that if xy and y, are solutions to the equation
ax + by = N, then any other solutions x and y to this equation are of the form

x=xp+m-——

(a, b)
a
Y=>Y—m (@, b)
for some integer m (positive or negative).

This latter theorem (a proof of which is outlined in the exercises) provides a com-
plete solution of the First Order Diophantine Equation ax +by = N provided we know
there is at least one solution to this equation. But the equation ax + by = N is simply
another way of stating that NV is an element of the ideal generated by a and b. Since we
know this ideal is just (d), the principal ideal generated by the greatest common divisor
d of a and b, this is the same as saying N € (d), i.e., N is divisible by d. Hence, the
equation ax + by = N is solvable in integers x and y if and only if N is divisible by
the g.cd. of a and b (and then the result quoted above gives a full set of solutions of
this equation).

We end this section with another criterion that can sometimes be used to prove
that a given integral domain is not a Euclidean Domain.! For any integral domain let

"The material here and in some of the following section follows the exposition by J.C. Wilson in
A principal ideal ring that is not a Euclidean ring, Math. Mag., 46(1973), pp. 34-38, of ideas of Th.
Motzkin, and use a simplification by Kenneth S. Williams in Note on non-Euclidean Principal Ideal
Domains, Math. Mag., 48(1975), pp. 176-177.
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R=R*U {0} denote the collection of units of R together with 0. Anelementu € R— R
is called a universal side divisor if for every x € R there is some z € R such that u
divides x — z in R, i.e., there is a type of “division algorithm” for u: every x may be
written x = qu + z where z is either zero or a unit. The existence of universal side
divisors is a weakening of the Euclidean condition:

Proposition S. Let R be an integral domain that is not a field. If R is a Euclidean
Domain then there are universal side divisors in R.

Proof: Suppose Ris Euclidean with respect to some norm N and let u be an element
of R — R (which is nonempty since R is not a field) of minimal norm. For any x € R,
write x = qu + r where r is either 0 or N(r) < N(u). Ineither case the minimality of
u implies r € R. Hence u is a universal side divisor in R.

Example

We can use Proposition 5 to prove that the quadratic integer ring R = Z[(1 + +/—19) /2] is
not a Euclidean Domain with respect to any norm by showing that R contains no universal
side divisors (we shall see in the next section that all of the ideals in R are principal,
so the technique in the examples following Proposition 1 do not apply to this ring). We
have already determined that £1 are the only units in R and so R = {0, £1}. Suppose
u € R is a universal side divisor and let N(a + b(1 + +/—19)/2) = a? + ab + 5b*
denote the field norm on R as in Section 7.1. Note that if a,b € Z and b # 0 then
a? + ab + 5b% = (a + b/2)* + 19/4b* > 5 and so the smallest nonzero values of N on R
are 1 (for the units +1) and 4 (for £2). Taking x = 2 in the definition of a universal side
divisor it follows that ¥ must divide one of 2 —0or 2 + 1 1in R, i.e., u is a nonunit divisor
of2or3in R If 2 = af then 4 = N(a)N(B) and by the remark above it follows that
one of @ or B has norm 1, i.e., equals 1. Hence the only divisors of 2 in R are {+1, £2}.
Similarly, the only divisors of 3 in R are {1, £3}, so the only possible values for u are
+2 or +3. Taking x = (1 +4/—19)/2 it is easy to check that none of x, x 1 are divisible
by £2 or £3 in R, so none of these is a universal side divisor.

EXERCISES

1. For each of the following five pairs of integers a and b, determine their greatest common
divisor d and write d as a linear combination ax + by of a and b.
(@ a=20,b=13.
(b) a =69,b =1372.
(©) a=11391, b = 5673.
(d) a = 507885, b = 60808.
(e) a = 91442056588823, b = 779086434385541 (the Euclidean Algorithm requires
only 7 steps for these integers).

2. Foreach of the following pairs of integers a and n, show that a is relatively prime to n and
determine the inverse of a mod n (cf. Section 3 of the Preliminaries chapter).
@ a=13,n=20.
(b) a =69,n = 89.
(¢) a=1891,n =3797.
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(d) a = 6003722857, n = 77695236973 (the Euclidean Algorithm requires only 3 steps
for these integers).

3. Let R be a Euclidean Domain. Letm be the minimum integer in the set of norms of nonzero
elements of R. Prove that every nonzero element of R of norm  is a unit. Deduce that a
nonzero element of norm zero (if such an element exists) is a unit.

4. Let R be a Euclidean Domain.
(a) Prove thatif (a, b) = 1 and a divides bc, then a divides c. More generally, show that

divides c.

if a divides bc with nonzero a, b then G ab)
a,
(b) Consider the Diophantine Equation ax + by = N where a, b and N are integers and

a, b are nonzero. Suppose xq, Yo is a solution: axg + byp = N. Prove that the full set
of solutions to this equation is given by

b a
x—xo+m(a’b), Yy=>0 m(a,b)
as m ranges over the integers. [If x, y is a solution to ax + by = N, show that
a(x — x0) = b(yo — y) and use (a).]
5. Determine all integer solutions of the following equations:
(@ 2x+4y=5
(b) 17x +29y =31
(c) 85x+ 145y = 505.

6. (T he Postage Stamp Problem) Let a and b be two relatively prime positive integers. Prove
that every sufficiently large positive integer N can be written as a linear combination
ax + by of a and b where x and y are both nonnegative, i.e., there is an integer Ng such that
for all N > Ny the equation ax + by = N can be solved with both x and y nonnegative
integers. Prove in fact that the integer ab — a — b cannot be written as a positive linear
combination of a and b but that every integer greater than ab — a — b is a positive linear
combination of a and b (so every “postage” greater than ab — a — b can be obtained using
only stamps in denominations a and b).

7. Find a generator for the ideal (85, 1413i) in Z[i], i.e., a greatest common divisor for 85
and 1413i, by the Euclidean Algorithm. Do the same for the ideal (47 — 13i, 53 + 56i).

It is known (but not so easy to prove) that D = -1, -2, -3, -7, —11, —19, —43, —67, and
—163 are the only negative values of D for which every ideal in O is principal (i.e., O is aP1D.
in the terminology of the next section). The results of the next exercise determine precisely
which quadratic integer rings with D < 0 are Euclidean.

8. Let F = Q(+/D) be a quadratic field with associated quadratic integer ring O and field

norm N as in Section 7.1.

(a) Suppose D is —1,—-2, —3, =7 or —11. Prove that O is a Euclidean Domain with
respect to N. [Modify the proof for Z[i] (D = —1) in the text. For D = -3, -7, —11
prove that every element of F differs from an element in O by an element whose norm
is at most (1 + | D))? /(16]DJ), which is less than 1 for these values of D. Plotting the
points of O in C may be helpful.]

(b) Suppose that D = —43, —67, or —163. Prove that O is not a Euclidean Domain with
respect to any norm. [Apply the same proof as for D = —19 in the text.]

9. Provethatthering of integers ) inthequadraticinteger ring Q(~/2 ) is a Euclidean Domain
withrespect to the norm given by the absolute value of the field norm N in Section 7.1.

10. Prove that the quotient ring Z[i] / I is finite for any nonzero ideal I of Z[i]. [Use the fact
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that I = () for some nonzero « and then use the Division Algorithm in this Euclidean
Domain to see that every coset of [ is represented by an element of norm less than N («).]
11. Let R be a commutative ring with 1 and let a and b be nonzero elements of R. A least
common multiple of a and b is an element e of R such that
() a|eandb |e, and
@ii) ifa | € andb | € thene | €.
(a) Prove that a least common multiple of a and b (if such exists) is a generator for the unique
largest principal ideal contained in (a) N (b).

(b) Deduce that any two nonzero elements in a Euclidean Domain have a least common
multiple which is unique up to multiplication by a unit.

b
, where

(c) Provethat in a Euclidean Domain the least common multiple of a and b is
a,

(a, b) is the greatest common divisor of @ and b.

12. (A Public Key Code) Let N be a positive integer. Let M be an integer relatively prime to
N and let d be an integer relatively prime to ¢(N), where ¢ denotes Euler’s ¢-function.
Prove that if M; = M? (mod N) then M = Mf' (mod N) where d’ is the inverse of d
mod ¢(N): dd’ =1 (mod ¢(N)).

Remark: This resultis the basis for a standard Public Key Code. Suppose N = pq is the product
of two distinct large primes (each on the order of 100 digits, for example). If M is a message,
then M = M? (mod N) is a scrambled (encoded) version of M, which can be unscrambled
(decoded) by computing M' i’ (mod N) (these powers can be computed quite easily even for
large values of M and N by successive squarings). The values of N and d (but not p and gq)
are made publicly known (hence the name) and then anyone with a message M can send their
encoded message M9 (mod N). To decode the message it seems necessary to determine d’,
which requires the determination of the value (N) = ¢(pg) = (p — 1)(¢ — 1) (no one has
as yet proved that there is no other decoding scheme, however). The success of this method
as a code rests on the necessity of determining the factorization of N into primes, for which
no sufficiently efficient algorithm exists (for example, the most naive method of checking all
factors up to +/N would here require on the order of 10'% computations, or approximately 300
years even at 10 billion computations per second, and of course one can always increase the
size of p and g).

8.2 PRINCIPAL IDEAL DOMAINS (P.I.D.s)

Definition. A Principal Ideal Domain (P1.D.) is an integral domain in which every
ideal is principal.

Proposition 1 proved that every Euclidean Domain is a Principal Ideal Domain
so that every result about Principal Ideal Domains automatically holds for Euclidean
Domains.

Examples
(1) As mentioned after Proposition 1, the integers Z are a P.I.D. We saw in Section 7.4
that the polynomial ring Z[x] contains nonprincipal ideals, hence is not a P.I.D.
(2) Example 2 following Proposition 1 showed that the quadratic integer ring Z[+/—5]
is not a PLD., in fact the ideal (3, 1 + +/=5) is a nonprincipal ideal. Itis possible
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for the product I J of two nonprincipal ideals I and J to be principal, for example the
ideals (3, 1 ++/—5) and (3, 1 — +/=5) are both nonprincipal and their product is the
principal ideal generated by 3, i.e., (3, 1 + +/—5)(3, 1 — ~/=5) = (3) (cf. Exercise 5
and the example preceding Proposition 12 below).

It is not true that every Principal Ideal Domain is a Euclidean Domain. We shall
prove below that the quadratic integer ring Z[ (1 + +/—19)/2], which was shown not
to be a Euclidean Domain in the previous section, nevertheless is a P1.D.

From an ideal-theoretic point of view Principal Ideal Domains are a natural class
of rings to study beyond rings which are fields (where the ideals are just the trivial
ones: (0) and (1)). Many of the properties enjoyed by Euclidean Domains are also
satisfied by Principal Ideal Domains. A significant advantage of Euclidean Domains
over Principal Ideal Domains, however, is that although greatest common divisors exist
in both settings, in Euclidean Domains one has an algorithm for computing them. Thus
(as we shall see in Chapter 12 in particular) results which depend on the existence
of greatest common divisors may often be proved in the larger class of Principal Ideal
Domains although computation of examples (i.e., concrete applications of these results)
are more effectively carried out using a Euclidean Algorithm (if one is available).

We collect some facts about greatest common divisors proved in the preceding
section. :

Proposition 6. Let R be a Principal Ideal Domain and let a and b be nonzero elements
of R. Let d be a generator for the principal ideal generated by a and b. Then
(1) d is a greatest common divisor of a and b
(2) d can be written as an R-linear combination of a and b, i.e., there are elements
x and y in R with
d =ax + by

(3) d is unique up to multiplication by a unit of R.
Proof: This is just Propositions 2 and 3.

Recall that maximal ideals are always prime ideals but the converse is not true in
general. We observed in Section 7.4, however, that every nonzero prime ideal of Z is
a maximal ideal. This useful fact is true in an arbitrary Principal Ideal Domain, as the
following proposition shows.

Proposition 7. Every nonzero prime ideal in a Principal Ideal Domain is a maximal
ideal.

Proof: Let (p) be a nonzero prime ideal in the Principal Ideal Domain R and let
I = (m) be any ideal containing (p). We must show that I = (p) or I = R. Now
p € (m)so p =rm forsomer € R. Since (p) is aprime ideal and rm € (p), either r
or m must lie in (p). If m € (p) then (p) = (m) = 1. If, on the other hand, r € (p)
write r = ps. In this case p = rm = psm, so sm = 1 (recall that R is an integral
domain) and m is a unitso I = R.
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As we have already mentioned, if F is a field, then the polynomial ring F[x] is a
Euclidean Domain, hence also a Principal Ideal Domain (this will be proved in the next
chapter). The converse to this is also true. Intuitively, if / is an ideal in R (such as the
ideal (2) in Z) then the ideal (I, x) in R[x] (such as the ideal (2, x) in Z[x]) requires
one more generator than does 1, hence in general is not principal.

Corollary 8. If R is any commutative ring such that the polynomial ring R[x] is a
Principal Ideal Domain (or a Euclidean Domain), then R is necessarily a field.

Proof: Assume R[x] is a Principalldeal Domain. Since R is a subring of R[x] then
R must be an integral domain (recall that R[x] has an identity if and only if R does).
The ideal (x) is a nonzero prime ideal in R[x] because R[x]/(x) is isomorphic to the
integral domain R. By Proposition 7, (x) is a maximal ideal, hence the quotient R is a
field by Proposition 12 in Section 7.4.

The last result in this section will be used to prove that notevery P.1.D. is a Euclidean
Domain and relates the principal ideal property with another weakening of the Euclidean
condition.

Definition. Define N to be a Dedekind-Hasse norm if N is a positive norm and for
every nonzero a, b € R either a is an element of the ideal (b) or there is a nonzero
element in the ideal (a, b) of norm strictly smaller than the norm of b (i.e., either b
divides a in R or there exist s,t € R with0 < N(sa — tb) < N (b)).

Note that R is Euclidean with respect to a positive norm N if it is always possible
to satisfy the Dedekind—Hasse condition with s = 1, so this is indeed a weakening of
the Euclidean condition.

Proposition 9. The integral domain R is a P1.D. if and only if R has a Dedekind—Hasse

IlOI'l’l'l.2

Proof: Let I beany nonzeroideal in R and let b be anonzero element of I with N (b)
minimal. Suppose a is any nonzero element in I, so that the ideal (a, b) is contained
in 1. Then the Dedekind—Hasse condition on N and the minimality of b implies that
a € (b), so 1 = (b) is principal. The converse will be proved in the next section
(Corollary 16).

2That a Dedekind-Hasse norm on R implies that R is a PLD. (and is equivalent when R is a ring
of algebraic integers) is the classical Criterion of Dedekind and Hasse, cf. Uber eindeutige Zerlegung in
Primelemente oder in Primhauptideale in Integritdtsbereichen, Jour. fiir die Reine und Angew. Math.,
159(1928), pp. 3-12. The observation that the converse holds generally is more recent and due to
John Greene, Principal Ideal Domains are almost Euclidean, Amer. Math. Monthly, 104(1997), pp.
154-156.
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Example

Let R = Z[(1++/—19)/2] be the quadratic integer ring considered at the end of the previous
section. We show that the positive field norm N(a + b(1 + V/—19)/2) = a? + ab + 5b?
defined on R is a Dedekind—Hasse norm, which by Proposition 9 and the results of the
previous section will prove that R is a P1.D. but not a Euclidean Domain.

, Suppose ¢, B are nonzero elements of R and «/8 ¢ R. We must show that there are
elements s, € R with 0 < N(sa —tB) < N(B), which by the multiplicativity of the field
norm is equivalent to

0<NGZs—1) <. *)
B
b/— .
Write 2 u € Q[+/—19] with integers a, b, ¢ having no common divisor and
c

with ¢ > 1 (since B is assumed not to divide «). Since a, b, ¢ have no common divisor
there are integers x, y, z with ax + by + cz = 1. Write ay — 19bx = c¢q + r for some
quotient g and remainder r with |r| < c/2andlets = y + x/—19and t = g — z4/—19.
Then a quick computation shows that

(ay — 19bx — cq)? + 19(ax + by + cz)?
2
c

19
o2

1
0<N(%s—t)= SZ+
and so (x) is satisfied with this s and ¢ provided ¢ > 5.

Suppose that ¢ = 2. Then oneofa, b is even and the other is odd (otherwise a/B € R),

(@—-1)+by-19

and then a quick check shows that s = 1 and ¢ = — S are elements of R
satisfying ().

Suppose that ¢ = 3. The integer a> + 1962 is not divisible by 3 (modulo 3 this is
a® + b? which is easily seen to be 0 modulo 3 if and only if a and b are both 0 modulo 3;
but then a, b, ¢ have a common factor). Write a? + 19b2 = 3q + r withr = 1 or2. Then
again a quick check shows that s = a — by/—19, t = g are elements of R satisfying (x).

Finally, suppose that ¢ = 4, so a and b are not both even. If one of a, b is even and the
other odd, then a2 + 1962 is odd, so we can write a2 + 1962 = 4q + r for some g, r € Z
and0 <r < 4. Thens = a — b+/—19 and t = g satisfy (x). If a and b are both odd, then
a? + 19b2 = 1 + 3mod 8, so we can write a2 + 19b% = 8q + 4 for some g € Z. Then
5= a—by-19

2

and t = g are elements of R that satisfy ().

EXERCISES

1. Prove that in a Principal Ideal Domain two ideals (a) and (b) are comaximal (cf. Section
7.6) if and only if a greatest common divisor of a and b is 1 (in which case a and b are
said to be coprime or relatively prime).

2. Provethatany two nonzero elements of a PI.D. have a least common multiple (cf. Exercise
11, Section 1).
3. Prove that a quotient of a P.I.D. by a prime ideal is again a P.I1.D.
4. Let R be an integral domain. Prove that if the following two conditions hold then R is a
Principal Ideal Domain:
(i) any two nonzero elements a and b in R have a greatest common divisor which can be
written in the form ra + sb for somer, s € R, and
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(ii) if a1, a2, a3, ... are nonzero elements of R such that a;+,; | a; for all i, then there is
apositive integer N such that g,, is a unit times ay foralln > N.

5. Let R be the quadratic integer ring Z[+/—5]. Define the ideals I, = (2,1 4 +/=5),
I=03,2++/=5),and I}, = (3,2 — v/=5).

(a) Prove that I, I3, and I; are nonprincipal ideals in R. [Note that Example 2 following
Proposition 1 proves this for I3.]

(b) Prove that the product of two nonprincipal ideals can be principal by showing that 122
is the principal ideal generated by 2, i.e., I? = (2).

(¢) Provesimilarlythat I, 13 = (1—+/=5)and LI} = (1++/—5) areprincipal. Conclude
that the principal ideal (6) is the product of 4 ideals: (6) = 122 I 13’.

6. Let R be an integral domain and suppose that every prime ideal in R is principal. This
exercise proves that every ideal of R is principal.i.e., R is aPLD.

(a) Assume that the set of ideals of R that are not principal is nonempty and prove that
this set has a maximal element under inclusion (which, by hypothesis, is not prime).
[Use Zom’s Lemma.]

(b) Let 7 be anideal which is maximal with respect to being nonprincipal, andleta, b € R
withab € I buta ¢ I and b ¢ I. Let I, = (1, a) be the ideal generated by I and a,
let I, = (I, b) be the ideal generated by I and b, and define J = {r € R | 1, C I}.
Prove that I, = («) and J = (B) are principal ideals in R with I C I, € J and
I, ] =(ap) C I

(c) If x € I show that x = s« for some s € J. Deduce that I = I,J is principal, a
contradiction, and conclude that R is a PI.D.

7. An integral domain R in which every ideal generated by two elements is principal (i.e.,
forevery a, b € R, (a,b) = (d) for some d € R) is called a Bezout Domain. [cf. also
Exercise 11 in Section 3.]

(a) Prove that the integral domain R is a Bezout Domain if and only if every pair of
elements a, b of R hasa g.c.d. d in R thatcan be written as an R-linear combination
of aand b, i.e.,d = ax + by for some x, y € R.

(b) Prove that every finitely generated ideal of a Bezout Domain is principal. [cf. the
exercises in Sections 9.2 and 9.3 for Bezout Domains in which not every ideal is
principal.]

(c) Let F bethe fraction field of the Bezout Domain R. Provethateveryelementof F can
be writtenin the form a/b with a, b € R and a and b relatively prime (cf. Exercise 1).

8. Prove that if R is a Principal Ideal Domain and D is a multiplicatively closed subset of R,
then D! R is also a PLD. (cf. Section 7.5).

8.3 UNIQUE FACTORIZATION DOMAINS (U.F.D.s )

In the case of the integers Z, there is another method for determining the greatest
common divisor of two elements a and b familiar from elementary arithmetic, namely
the notion of “factorization into primes” for a and b, from which the greatest common
divisor can easily be determined. This can also be extended to a larger class of rings
called Unique Factorization Domains (U.F.D.s) — these will be defined shortly. We
shall then prove that

every Principal Ideal Domain is a Unique Factorization Domain
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so that every result about Unique Factorization Domains will automatically hold for
both Euclidean Domains and Principal Ideal Domains.
We first introduce some terminology.

Definition. Let R be an integral domain.

(1) Suppose r € R is nonzero and is not a unit. Then r is called irreducible in R
if whenever r = ab with a, b € R, at least one of a or b must be a unit in R.
Otherwise r is said to be reducible.

(2) Thenonzero element p € R is called prime in R if the ideal (p) generated by
p is a prime ideal. In other words, a nonzero element p is a prime if it is not a
unit and whenever p | abforany a, b € R, then either p | aorp | b.

(3) Two elements a and b of R differing by a unit are saidtobe associatein R (i.e.,
a = ub for some unit u in R).

Proposition 10. In an integral domain a prime element is always irreducible.

Proof: Suppose (p) is a nonzero prime ideal and p = ab. Thenab = p € (p), so
by definition of prime ideal one of a or b, say a, is in (p). Thus a = pr for some r.
This implies p = ab = prbsorb = 1 and b is aunit. This shows that p is irreducible.

It is not true in general that an irreducible element is necessarily prime. For
example, consider the element 3 in the quadratic integer ring R = Z[v/=5]. The
computations in Section 1 show that 3 is irreducible in R, but 3 is not a prime since
(24++/=5)(2—+/=5) = 3? is divisible by 3, but neither 2++/—=5 nor 2—+/=5 is divis-
ibleby 3in R.

If R is a Principal Ideal Domain however, the notions of prime and irreducible
elements are the same. In particular these notions coincide in Z and in F[x] (where F
is a field).

Proposition 11. In a Principal Ideal Domain a nonzero element is a prime if and only
if it is irreducible.

Proof: We have shown above that prime implies irreducible. We must show con-
versely that if p is irreducible, then p is a prime, i.e., the ideal (p) is a prime ideal. If
M is any ideal containing (p) then by hypothesis M = (m) is a principal ideal. Since
p € (m), p = rm for some r. But p is irreducible so by definition either r or m is a
unit. This means either (p) = (m) or (m) = (1), respectively. Thus the only ideals
containing (p) are (p) or (1), i.e., (p) is a maximal ideal. Since maximal ideals are
prime ideals, the proof is complete.

Example

Proposition 11 gives another proof that the quadratic integer ring Z[+/—5] is not a P.I.D.
since 3 is irreducible but not prime in this ring.
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The irreducible elements in the integers Z are the prime numbers (and their nega-
ves) familiar from elementary arithmetic, and two integers a and b are associates of
1€ another if and only if a = +b.

In the integers Z any integer n can be written as a product of primes (not necessarily
stinct), as follows. If # is not itself a prime then by definition it is possible to write
= nn; for two other integers n; and n2 neither of which is a unit, i.e., neither of
hich is 1. Both n; and n, must be smaller in absolute value than # itself. If they are
’th primes, we have already written n as a product of primes. If one of n, or n, is not
ime, then it in turn can be factored into two (smaller) integers. Since integers cannot
icrease in absolute value indefinitely, we must at some point be left only with prime
teger factors, and so we have written n as a product of primes.

For example, if n = 2210, the algorithm above proceeds as follows: n is not
self prime, since we can write n = 2 - 1105. The integer 2 is a prime, but 1105 is not:
05 = 5-221. The integer 5 is prime, but 221 is not: 221 = 13-17. Here the algorithm
tminates, since both 13 and 17 are primes. This gives the prime factorization of 2210
2210 =2-5-13-17. Similarly, we find 1131 = 3 - 13 - 29. In these examples each
ime occurs only to the first power, but of course this need not be the case generally.

In the ring Z not only is it true that every integer n can be written as a product of
imes, but in fact this decomposition is unique in the sense that any two prime fac-
rizations of the same positive integer n differ only in the order in which the positive
ime factors are written. The restriction to positive integers is to avoid considering
e factorizations (3)(5) and (—3)(—5) of 15 as essentially distinct. This unique fac-
rization property of Z (which we shall prove very shortly) is extremely useful for the
ithmetic of the integers. General rings with the analogous property are given a name.

efinition. A Unique Factorization Domain (U.ED.)is an integial domain R in which
'ery nonzero element r € R which is not a unit has the following two properties:
(i) r can be written as a finite product of irreducibles p; of R (not necessarily
distinct): r = p1p2 - - - p, and
(ii) the decomposition in (i) is unique up to associates: namely, ifr = q1q, - - - gn
is another factorization of r into irreducibles, then m = n and there is some
renumbering of the factors so that p; is associate to g; fori = 1,2, ..., n.

xamples

(1) A field F is trivially a Unique Factorization Domain since every nonzero element is a
unit, so there are no elements for which properties (i) and (ii) must be verified.

(2) As indicated above, we shall prove shortly that every Principal Ideal Domain is a
Unique Factorization Domain (so, in particular, Z and F[x] where F is a field are both
Unique Factorization Domains).

(3) We shall also prove in the next chapter that the ring R[x] of polynomials is a Unique
Factorization Domain whenever R itself is a Unique Factorization Domain (in contrast
to the properties of being a Principal Ideal Domain or being a Euclidean Domain, which
do not carry over from a ring R to the polynomial ring R[x]). This result together with
the preceding example will show that Z[x] is a Unique Factorization Domain.

(4) The subring of the Gaussian integers R = Z[2i] = {a + 2bi | a,b € Z}, where
i2 = —1, is an integral domain but not a Unique Factorization Domain (rings of this
nature were introduced in Exercise 23 of Section 7.1). The elements 2 and 2i are
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irreducibles which are not associates in R sincei ¢ R, and 4 = 2 -2 = (=2i) - (2i)
has two distinct factorizations in R. One may also check directly that 2i is irreducible
but not prime in R (since R/(2i) = Z/4Z). In the larger ring of Gaussian integers,
ZJi], (which is a Unique Factorization Domain) 2 and 2i are associates since i is a unit
in this larger ring. We shall give a slightly different proof that Z[2i] is not a Unique
Factorization Domain at the end of Section 9.3 (one in which we do not have to check
that 2 and 2i are irreducibles).

(5) The quadratic integer ring Z[+/—5 ] is another example of an integral domain that is
not a Unique Factorization Domain, since 6 = 2-3 = (1 + +/=5)(1 — +/=5) gives
two distinct factorizations of 6 into irreducibles. The principal ideal (6) in Z[/=5]
can be written as a product of 4 nonprincipal prime ideals: (6) = P22 P3P; and the
two distinct factorizations of the element 6 in Z[+/—5 ] can be interpreted as arising
from two rearrangements of this product of ideals into products of principal ideals:
the product of P22 = (2) with P;P; = (3), and the product of P,P3 = (1 + Jv=5)
with PoP; = (1 - V=5) (cf. Exercise 8).

While the elements of the quadratic integer ring (O need not have unique factor-
ization, it is a theorem (Corollary 16.16) that every ideal in O can be written uniquely
as a product of prime ideals. The unique factorization of ideals into the product of
prime ideals holds in general for rings of integers of algebraic number fields (exam-
ples of which are the quadratic integer rings) and leads to the notion of a Dedekind
Domain considered in Chapter 16. It was the failure to have unique factorization into
irreducibles for elements in algebraic integer rings in number theory that originally
led to the definition of an ideal. The resulting uniqueness of the decomposition into
prime ideals in these rings gave the elements of the ideals an “ideal” (in the sense of
“perfect” or “desirable”) behavior that is the basis for the choice of terminology for
these (now fundamental) algebraic objects.

The first property of irreducible elements in a Unique Factorization Domain is
that they are also primes. One might think that we could deduce Proposition 11 from
this proposition together with the previously mentioned theorem (that we shall prove
shortly) that every Principal Ideal Domain is a Unique Factorization Domain, however
Proposition 11 will be used in the proof of the latter theorem.

Proposition 12. In a Unique Factorization Domain a nonzero element is a prime if and
only if it is irreducible.

Proof: Let R be a Unique Factorization Domain. Since by Proposition 10, primes
of R are irreducible it remains to prove that each irreducible element is a prime. Let
p be an irreducible in R and assume p | ab for some a, b € R; we must show that
p divides either a or b. To say that p divides ab is to say ab = pc for some c in R.
Writing a and b as a product of irreducibles, we see from this last equation and from the
uniqueness of the decomposition into irreducibles of ab that the irreducible element p
must be associate to one of the irreducibles occurring either in the factorization of a or
in the factorization of . We may assume that p is associate to one of the irreducibles
in the factorization of a, i.e., that a can be written as a product a = (up)p; - - - p, for
u a unit and some (possibly empty set of) irreducibles p», ..., p,. But then p divides
a, since a = pd withd = up, - - - p,,, completing the proof.
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In a Unique Factorization Domain we shall now use the terms “prime” and “irre-
ducible” interchangeably although we shall usually refer to the “primes” in Z and the
“irreducibles” in F[x].

We shall use the preceding proposition to show that in a Unique Factorization
Domain any two nonzero elements a and b have a greatest common divisor:

Proposition 13. Let a and b be two nonzero elements of the Unique Factorization
Domain R and suppose

a= uplelpzez L. pnen and b= vplf‘p2f2 . Pnf"

are prime factorizations for a and b, where u and v are units, the primes p,, p2, ..., Pn
are distinct and the exponents ¢; and f; are > 0. Then the element

d = plmin (t’n.fl)pzmin (e2.f2) . .. pnmiﬂ (@n: fn)

(where d = 1 if all the exponents are 0) is a greatest common divisor of a and b.

Proof: Since the exponents of each of the primes occurring in d are no larger than
the exponents occurring in the factorizations of both a and b, d divides both a and
b. To show that d is a greatest common divisor, let ¢ be any common divisor of a
and b and let ¢ = ¢;8'@,%* - - - g, be the prime factorization of c¢. Since each g;
divides c, hence divides a and b, we see from the preceding proposition that g; must
divide one of the primes p;. In particular, up to associates (so up to multiplication
by a unit) the primes occurring in ¢ must be a subset of the primes occurring in a
and b: {q1.492,---,9m} < {p1, P2, - - -, Px}. Similarly, the exponents for the primes
occurring in ¢ must be no larger than those occurring in d. This implies that ¢ divides
d, completing the proof.

Example

In the example above, where a = 2210 and b = 1131, we find immediately from their
prime factorizations that (a, b) = 13. Note that if the prime factorizations for a and b are
known, the proposition above gives their greatest common divisor instantly, but that finding
these prime factorizations is extremely time-consuming computationally. The Euclidean
Algorithm is the fastest method for determining thé g.c.d. of two integers but unfortunately
it gives almost no information on the prime factorizations of the integers.

We now come to one of the principal results relating some of the rings introduced
in this chapter.

Theorem 14. Every Principal Ideal Domain is a Unique Factorization Domain. In
particular, every Euclidean Domain is a Unique Factorization Domain.

Proof: Note that the second assertion follows from the first since Euclidean Do-
mains are Principal Ideal Domains. To prove the first assertion let R be a Principal
Ideal Domain and let r be a nonzero element of R which is not a unit. We must show
first that r can be written as a finite product of irreducible elements of R and then we
must verify that this decomposition is unique up to units.

Sec. 83  Unique Factorization Domains (U.F.Ds) 287



The method of proof of the first part is precisely analogous to the determination
of the prime factor decomposition of an integer. Assume r is nonzero and is not a
unit. If r is itself irreducible, then we are done. If not, then by definition r can be
written as a product r = ryr, where neither | nor r; is a unit. If both these elements
are irreducibles, then again we are done, having written r as a product of irreducible
elements. Otherwise, at least one of the two elements, say r) is reducible, hence can be
written as a product of two nonunit elements r; = ry;ry2, and so forth. What we must
verify is that this process terminates, i.e., that we must necessarily reach a point where
all of the elements obtained as factors of r are irreducible. Suppose this is not the case.
From the factorization r = r,r, we obtain a proper inclusion of ideals: (r) C (r;) C R.
The first inclusion is proper since r; is not a unit, and the last inclusion is proper since ry
is not a unit. From the factorization of r; we similarly obtain (r) C (r;) C (r11) C R.
If this process of factorization did not terminate after a finite number of steps, then we
would obtain an infinite ascending chain of ideals:

rnc@ry)c@n)cCc---CR

where all containments are proper, and the Axiom of Choice ensures that an infinite
chain exists (cf. Appendix I).

We now show that any ascending chain I} € I, C - - - € R of ideals in a Principal
Ideal Domain eventually becomes stationary, i.e., there is some positive integer n such
that I = I, forall k > n.3 In particular, it is not possible to have an infinite ascending
chain of ideals where all containments are proper. Let I = U2, I;. It follows easily (as
in the proof of Proposition 11 in Section 7.4) that I is an ideal. Since R is a Principal
Ideal Domain it is principally generated, say I = (a). Since I is the union of the ideals
above, a must be an element of one of the ideals in the chain, say a € I,,. But then we
have I, C I = (a) C I, and so I = I,, and the chain becomes stationary at I,. This
proves that every nonzero element of R which is not a unit has some factorization into
irreducibles in R.

It remains to prove that the above decomposition is essentially unique. We proceed
by induction on the number, n, of irreducible factors in some factorization of the element
r. If n = 0, then r is a unit. If we had r = gc (some other factorization) for some
irreducible g, then g would divide a unit, hence would itself be a unit, a contradiction.
Suppose now that n is at least 1 and that we have two products

¥F = p1p2--"Pn = Q192" Gn mz=>n

for r where the p; and g; are (not necessarily distinct) irreducibles. Since then p;
divides the product on the right, we see by Proposition 11 that p; must divide one of the
factors. Renumbering if necessary, we may assume p; divides g;. But then ¢, = p,u
for some element u of R which must in fact be a unit since g, is irreducible. Thus p;
and g are associates. Cancelling p; (recall we are in an integral domain, so this is
legitimate), we obtain the equation

!
P2-:"DPn = UqQ293 - -Gm = G243°°-4n m=n.
3This same argument can be used to prove the more general statement: an ascending chain of ideals

becomes stationary in any commutative ring where all the ideals are finitely generated. This result will
be needed in Chapter 12 where the details will be repeated.
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where ¢, = ugq; is again an irreducible (associate to g;). By induction on n, we
conclude that each of the factors on the left matches bijectively (up to associates) with
the factors on the far right, hence with the factors in the middle (which are the same, up
to associates). Since p; and q; (after the initial renumbering) have already been shown
to be associate, this completes the induction step and the proof of the theorem.

Corollary 15. (Fundamental Theorem of Arithmetic) The integers Z are a Unique
Factorization Domain.

Proof: The integers Z are a Euclidean Domain, hence are a Unique Factorization
Domain by the theorem.

We can now complete the equivalence (Proposition 9) between the existence of a
Dedekind-Hasse norm on the integral domain R and whether R is a P1.D.

Corollary 16. Let R be a P1.D. Then there exists a multiplicative Dedekind—Hasse
norm on R.

Proof: If R is a P.1D. then R is a U.ED. Define the norm N by setting N(0) = 0,
N@) = 1 if u is a unit, and N(@) = 2" if a = p1p; - - - p, where the p; are
irreducibles in R (well defined since the number of irreducible factors of a is unique).
Clearly N(ab) = N(a)N(b) so N is positive and multiplicative. To show that N is a
Dedekind—Hasse norm, suppose that a, b are nonzero elements of R. Then the ideal
generated by a and b is principal by assumption, say (a, b) = (r). If a is not contained in
the ideal (b) then also r is not contained in (b), i.e., r is not divisible by b. Since b = xr
for some x € R, it follows that x is not a unitin R and so N(b) = N(x)N(r) > N(r).
Hence (a, b) contains a nonzero element with norm strictly smaller than the norm of b,
completing the proof.

Factorization in the Gaussian Integers

We end our discussion of Unique Factorization Domains by describing the irreducible
elements in the Gaussian integers Z[i] and the corresponding application to a famous
theorem of Fermat in elementary number theory. This is particularly appropriate since
the classical study of Z[i] initiated the algebraic study of rings.

In general, let O be a quadratic integer ring and let NV be the associated field norm
introduced in Section 7.1. Suppose a € O is an element whose norm is a prime p in
Z. If « = By forsome B, y € O then p = N(e) = N(B)N(y) so that one of N(B)
or N(y) is £1 and the other is + p. Since we have seen that an element of O has norm
+1 if and only if it is a unit in O, one of the factors of « is a unit. It follows that

if N(a) is + a prime (in Z ), then « is irreducible in O.

Suppose that 7 is a prime element in O and let (;r) be the ideal generated by 7 in
O. Since () is a prime ideal in O it is easy to check that (;r) N Z is a prime ideal in
Z (if a and b are integers with ab € (i) then either a or b is an element of (i7), so a
or b isin () N Z). Since N () is a nonzero integer in (1) we have (7) N Z = pZ
for some integer prime p. It follows from p € (ir) that 7 is a divisor in O of the
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integer prime p, and so the prime elements in O can be found by determining how
the primes in Z factor in the larger ring 0. Suppose 7 divides the prime p in O, say
p=mnn'. Then N(w)N(n') = N(p) = p?, so since 7 is not a unit there are only two
possibilities: either N(;r) = £p? or N(w) = £p. In the former case N(n’) = %1,
hence 7’ is a unit and p = 7 (up to associates) is irreducible in Z[i]. In the latter case
N(@r) = N(@t') = +p, hence 7’ is also irreducible and p = s’ is the product of
precisely two irreducibles.

Consider now the special case D = —1 of the Gaussianintegers Z[i]. Wehave seen
that the units in Z[i] are the elements +1 and +i. We proved in Section 1 that Z[i] is a
Euclidean Domain, hence is also a Principal Ideal Domain and a Unique Factorization
Domain, so the irreducible elements are the same as the prime elements, and can be
determined by seeing how the primes in Z factor in the larger ring Z[i].

Inthiscase@ = a+bi has N(a) = a@ = a?+b?, where@ = a—bi isthe complex
conjugate of a. It follows by what we just saw that p factors in Z[i] into precisely two
irreducibles if and only if p = a* + b? is the sum of two integer squares (otherwise
p remains irreducible in Z[i]). If p = a® + b? then the corresponding irreducible
elements in Z[i] are a % bi.

Clearly 2 = 12 + 12 is the sum of two squares, giving the factorization 2 =
(14i)(1—i) = —i(14i)2. Theirreducibles 1 4+i and 1 —i = —i (1 4 i) are associates
and it is easy to check that this is the only situation in which conjugate irreducibles
a + bi and a — bi can be associates.

Since the square of any integer is congruent to either 0 or 1 modulo 4, an odd prime
in Z that is the sum of two squares must be congruent to 1 modulo 4. Thus if p is
a prime of Z with p = 3 mod4 then p is not the sum of two squares and p remains
irreducible in Z[i].

Suppose now that pisa prime of Z with p = 1 mod4. We shall prove that p cannot
be irreducible in Z[i] which will show that p = (a + bi)(a — bi) factors as the product
of two distinct irreducibles in Z[i] or, equivalently, that p = a? + b? is the sum of two
squares. We first prove the following result from elementary number theory:

Lemma 17. The prime number p € Z divides an integer of the formn? + 1 if and only
if p is either 2 or is an odd prime congruent to 1 modulo 4.

Proof: The statement for p = 2 is trivial since 2 | 12 + 1. If p is an odd prime,
note that p I n? + 1 is equivalent to n? = —1in Z/ pZ. This in turn is equivalent to
saying the residue class of n is of order 4 in the multiplicative group (Z/pZ)*. Thus
p divides an integer of the form n? + 1 if and only if (Z/pZ)* contains an element
of order 4. By Lagrange’s Theorem, if (Z/pZ)* contains an element of order 4 then
|(Z/pZ)*| = p — 1is divisible by 4, i.e., p is congruent to 1 modulo 4.

Conversely, suppose p — 1 is divisible by 4. We first argue that (Z/pZ)* contains
aunique element of order 2. If m? = 1 mod p then p divides m> —1 = (m—1)(m +1).
Thus p divides eitherm — 1 (i.e., m = lmod p)orm + 1 (i.e., m = —1 mod p),so—1
is the unique residue class of order 2 in (Z/pZ)*. Now the abelian group (Z/pZ)*
contains a subgroup H of order 4 (for example, the quotient by the subgroup {1}
contains a subgroup of order 2 whose preimage is a subgroup of order 4 in (Z/pZ)>).
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Since the Klein 4-group has three elements of order 2 whereas (Z/ pZ)* — hence also
H — has a unique element of order 2, H must be the cyclic group of order 4. Thus
(Z/pZ)* contains an element of order 4, namely a generator for H.

Remark: We shall prove later (Corollary 19 in Section 9.5) that (Z/pZ)> is a cyclic
group, from which it is immediate that there is an element of order 4 if and only if p —1
is divisible by 4.

By Lemma 17, if p = 1 mod4 is a prime then p divides n* + 1 in Z for some
n € Z, so certainly p divides n> + 1 = (n + i)(n — i) in Z[i]. If p were irreducible
in Z[i] then p would divide either n + i or n — i in Z[i]. In this situation, since p is a
real number, it would follow that p divides both n + i and its complex conjugate n — i;
hence p would divide their difference, 2i. This is clearly not the case. We have proved
the following result:

Proposition 18.

(1) (Fermat’s Theorem on sums of squares) The prime p is the sum of two integer
squares, p = a* + b?,a,b € Z, if and only if p = 2 or p = 1 mod4. Except
for interchanging a and b or changing the signs of a and b, the representation
of p as a sum of two squares is unique.

(2) The irreducible elements in the Gaussian integers Z[i] are as follows:

(a) 1+ i (which has norm 2),

(b) the primes p € Z with p = 3 mod4 (which have norm p?), and

(¢) a + bi, a — bi, the distinct irreducible factors of p = a’>+ b =
(a+ bi)(a — bi) for the primes p € Z with p = 1 mod 4 (both of which
have norm p).

Thefirst partof Proposition 18 is a famous theorem of Fermat in elementary number
theory, for which a number of alternate proofs can be given.

More generally, the question of whether the integer n € Z can be written as a sum
of two integer squares, n = A? + B2, is equivalent to the question of whether n is the
norm of an element A + Bi in the Gaussian integers, i.e., n = A2 + B> = N(A + Bi).
Writing A + Bi = mym; - - - 7y as a product of irreducibles (uniquely up to units) it
follows from the explicit description of the irreducibles in Z[i] in Proposition 18 that n
is a norm if and only if the prime divisors of n that are congruent to 3 mod 4 occur to
even exponents. Further, if this condition on n is satisfied, then the uniqueness of the
factorization of A + Bi in Z[i] allows us to count the number of representations of n
as a sum of two squares, as in the following corollary.

Corollary 19. Let n be a positive integer and write

n=2p¢ ...pf'qf‘ .qh
where py, ..., p, are distinct primes congruent to 1 modulo4 and g, . . ., g, are distinct
primes congruent to 3 modulo 4. Then n can be written as a sum of two squares in Z,
ie,n =A%+ B?with A, B € Z,ifand only if each b; is even. Further, if this condition
on n is satisfied, then the number of representations of n as a sum of two squares is
4ar+D(@+1)---(a,+1).
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Proof: The first statement in the corollary was proved above. Assume now that
by, ..., b, are all even. For each prime p; congruent to 1 modulo 4 write p; = m;7;
fori = 1,2,...,r, where m; and 7r; are irreducibles as in (2)(c) of Proposition 18. If
N (A + Bi) = n then examining norms we see that, up to units, the factorization of
A 4+ Bi into irreducibles in Z[i] is given by

A+Bi=( +l) (nlll—alz) (n,u,.—a,z)qblﬂ qf s/2

with nonnegative integers a; 1, a; 2 satisfyinga; 1 +a;, = a; fori = 1,2, ..., r. Since
a; 1 can have the values 0, 1, ..., a; (and then g; ; is determined), there are a total of
(a; + (a2 +1) - - (a, + 1) distinct elements A + Bi in Z[i] of norm », up to units.
Finally, since there are four units in Z[i], the second statement in the corollary follows.

Example

Since 493 = 17 - 29 and both primes are congruent to 1 modulo 4, 493 = A% + B? is
the sum of two integer squares. Since 17 = (4 + i)(4 — i) and 29 = (5 + 2i)(5 — 2i)
the possible factorizations of A + Bi in Z[i] up to units are (4 + i)(5 + 2i) = 18 + 13i,
@G+i)5—-2i)=22—-3i,(4—i)(5—2i) =22+ 3i,and (4 — i)(5 — 2i) = 18 — 13i.
Multiplying by —1 reverses both signs and multiplication by i interchanges the A and B
and introduces one sign change. Then 493 = (£18)2 + (£13)2 = (£22)2 + (£3)? with
all possible choices of signs give 8 of the 16 possible representations of 493 as the sum of
two squares; the remaining 8 are obtained by interchanging the two summands.

Similarly, the integer 58000957 = 76 - 17 - 29 can be written as a sum of two squares
in precisely 16 ways, obtained by multiplying each of theintegers A, B in 493 = A% + B2
above by 73.

Summary

In summary, we have the following inclusions among classes of commutative rings with
identity:

fields C Euclidean Domains C P1.D.s C U.FED.s C integral domains

with all containments being proper. Recall that Z is a Euclidean Domain that is not a
field, the quadratic integer ring Z[(1 4+ +/—19)/2] is a Principal Ideal Domain that is
not a Euclidean Domain, Z[x] is a Unique Factorization Domain (Theorem 7 in Chapter
9) that is not a Principal Ideal Domain and Z[+/—5 ] is an integral domain that is not a
Unique Factorization Domain.

EXERCISES

1. Let G = Q* be the multiplicative group of nonzero rational numbers. If « = p/q € G,
where p and g are relatively prime integers, let ¢ : G — G be the map which inter-
changes the primes 2 and 3 in the prime power factorizations of p and g (so, for example,
@(2431151132) = 3421151132 (,(3/16) = (3/2%) = 2 /3* = 2/81, and g is the identity
on all rational numbers with numerators and denominators relatively prime to 2 and to 3).
(a) Prove that ¢ is a group isomorphism.

(b) Prove that there are infinitely many isomorphisms of the group G to itself.
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(c) Prove that none of the isomorphisms above can be extended to an isomorphism of the
ring Q to itself. In fact prove that the identity map is the only ring isomorphism of Q.

2. Leta and b be nonzero elements of the Unique Factorization Domain R. Prove that a and
b have a least common multiple (cf. Exercise 11 of Section 1) and describe it in terms of
the prime factorizations of a and b in the same fashion that Proposition 13 describes their
greatest common divisor.

3. Determine all the representations of the integer 2130797 = 172 - 73 - 101 as a sum of two
squares.

4. Prove that if an integer is the sum of two rational squares, then it is the sum of two integer

squares (for example, 13 = (1/5)2 + (18/5)2 =22 432,

5. Let R = Z[/—n] where n is a squarefree integer greater than 3.

(a) Prove that2, \/=n and 1 4+ /—n areirreducibles in R.

(b) Prove that R is not a U.ED. Conclude that the quadratic integer ring O is not a U.ED.
for D = 2,3mod4, D < —3 (so also not Euclidean and not a PI.D.). [Show that
either /—n or 1 + 4/=n is not prime.]

(c) Give an explicitideal in R thatis not principal. [Using (b) consider a maximal ideal
containing the nonprime ideal (v/—n) or (1 + /—n).]

6. (a) Prove that the quotient ring Z[i]/(1 + i) is a field of order 2.

(b) Let g € Zbe a prime with ¢ = 3mod4. Prove that the quotient ring Z[i]/(q) is a
field with g2 elements.

(c) Let p € Zbe aprime with p = 1 mod4 and write p = =7 as in Proposition 18. Show
that the hypotheses for the Chinese Remainder Theorem (Theorem 17 in Section 7.6)
are satisfied and that Z[i]/(p) = Z[i]/(7) x Z[i]/(7) asrings. Show that the quotient
ring Z[i]/(p) has order p2 and conclude that Z[i]/(;r) and Z[i]/(7r) are both fields
of order p.

7. Let w be an irreducible element in Z[i].

(a) For any integer n > 0, prove that @ty = n"t17[i] is anideal in (") = 7"Z[i]
and that multiplication by " induces an isomorphism Z[i]/(7) = (n") /(n""’l) as
additive abelian groups.

(b) Prove that |Z[i]/(=™)| = |Z[i]/()|".

(c) Prove for any nonzero « in Z[i] that the quotient ring Z[i{]/(c) has order equal to
N («). [Use (b) together with the Chinese Remainder Theorem and the results of the
previous exercise.]

8. Let R be the quadratic integer ring Z[+~/—5] and define the ideals I, = (2,1 + /=5),

I3=(3,2++v=5),and I} = (3,2 — +/=5).

(a) Prove that 2, 3, 1 + +/—5 and 1 — /=5 are irreducibles in R, no two of which
are associate in R, and that 6 = 2 -3 = (1 + +/=5) - (1 — +/=5) are two distinct
factorizations of 6 into irreducibles in R.

(b) Prove that I, I3, and Ié are prime ideals in R. [One approach: for I3, observe
that R/I3 = (R/(3))/(13/(3)) by the Third Isomorphism Theorem for Rings. Show
that R/(3) has 9 elements, (I3/(3)) has 3 elements, and that R/I3 = Z/3Z as an
additive abelian group. Conclude that 73 is a maximal (hence prime) ideal and that
R/I3 = Z/3Z as rings.]

(c) Show that the factorizations in (a) imply the equality of ideals (6) = (2)(3) and
6) = (1 + +v/=5)(1 — +/=5). Show that these two ideal factorizations give the
same factorization of the ideal (6) as the product of prime ideals (cf. Exercise 5 in
Section 2).
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9. Suppose that the quadratic integer ring O is a PLD. Prove that the absolute value of
the field norm N on O (cf. Section 7.1) is a Dedekind—Hasse norm on (0. Conclude
that if the quadratic integer ring O possesses any Dedekind-Hasse norm, then in fact the
absolute value of the field norm on O already provides a Dedekind—Hasse norm on O.
[If @, B € O then (a, B) = (y) for some y € . Show that if B does not divide « then
0 < |IN(p)| < IN(B)| — use the fact that the units in O are precisely the elements whose
norm is +1.]

Remark: If O is a Euclidean Domain with respect to some norm it is not necessarily true that
it is a Euclidean Domain with respect to the absolute value of the field norm (although this is
wue for D < 0, cf. Exercise 8 in Section 1). An example is D = 69 (cf. D. Clark, A guadratic
field which is Euclidean but not norm-Euclidean, Manuscripta Math., 83(1994), pp. 327-330).

10. (k-stage Euclidean Domains) Let R be an integral domain andlet N : R —» Z% U {0} be
a norm on R. Thering R is Euclidean with respect to N if for any a, b € R with b # O,
there exist elements g and r in R with

a=gb+r withr = 0or N(r) < N(b).

Suppose now that this condition is weakened, namely that for any a,b € R with b # 0,
there exist elements g, g’ and r, ¥’ in R with

a=gb+r, b=gr+r withr =0Qor N(r') < N(b),

1.e., the remainder after two divisions is smaller. Call such a domain a 2-stage Euclidean

Domain.

(a) Prove that iterating the divisions in a 2-stage Euclidean Domain produces a greatest
common divisor of a and b which is a linear combination of a and b. Conclude that
every finitely generated ideal of a 2-stage Euclidean Domain is principal. (There
are 2-stage Euclidean Domains that are not P.I.D.s, however.) [Imitate the proof of
Theorem 4.]

(b) Prove that a 2-stage Euclidean Domainin which every nonzero nonunit can be factored
into a finite number of irreducibles is a Unique Factorization Domain. [Prove first
that irreducible elements are prime, as follows. If p is irreducible and p | ab with
p notdividing a, use part (a) to write px + ay = 1 for some x, y. Multiply through
by b to conclude that p | b, so p is prime. Now follow the proof of uniqueness in
Theorem 14.]

(c) Make the obvious generalization to define the notion of a k-stage Euclidean Domain
for any integer k > 1. Prove that statements (a) and (b) remain valid if “2-stage
Euclidean” is replaced by “k-stage Euclidean.”

Remarks: There are examples of rings which are 2-stage Euclidean but are not Euclidean.
There are also examples of rings which are not Euclidean with respect to a given norm but
which are k-stage Euclidean with respect to the norm (for example, the ring Z[+/14] is not
Euclidean with respect to the usual norm N (a+b+/14) = |a2 — 14b?|, but is 2-stage Euclidean
with respect to this norm). The k-stage Euclidean condition is also related to the question of
whether the group GL,(R) of invertible n x n matrices with entries from R is generated by
elementary matrices (matrices with 1’s along the main diagonal, a single 1 somewhere off the
main diagonal, and 0’s elsewhere).

11. (Characterization of PID.s) Prove that R is a PLD. if and only if R is a U.ED. that is
also a Bezout Domain (cf. Exercise 7 in Section 2). [One direction is given by Theorem
14. For the converse, let a be a nonzero element of the ideal 7 with a minimal number of
irreducible factors. Prove that I = (a) by showing that if there is an element b € I that is
not in (a) then (a, b) = (d) leads to a contradiction.]
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CHAPTER 9

Polynomial Rings

We begin this chapter on polynomial rings with a summary of facts from the preceding
two chapters (with references where needed). The basic definitions were given in
slightly greater detail in Section 7.2. For convenience, the ring R will always be a
commutative ring with identity 1 # 0.

9.1 DEFINITIONS AND BASIC PROPERTIES

The polynomial ring R[x] in the indeterminate x with coefficients from R is the set
of all formal sums a,x" + a,_1x"! + --- + a;x + ap with n > 0 and each a; € R.
If a, # O then the polynomial is of degree n, a,x" is the leading term, and a,, is the
leading coefficient (where the leading coefficient of the zero polynomial is defined to be
0). The polynomial is monic if a, = 1. Addition of polynomials is “componentwise”:

Xn:aixi + ib;xi = Zn:(ai + b)x'
i=0 i=0 i=0

(here a, or b, may be zero in order for addition of polynomials of different degrees
to be defined). Multiplication is performed by first defining (ax')(bx/) = abx'*/ and
then extending to all polynomials by the distributive laws so that in general

n m n+m k
(Za;xi) X (Zb,"xi) = Z ( aibk_i)xk'.
i=0 i=0 =0 \i=0
In this way R[x] is a commutative ring with identity (the identity 1 from R) in which
we identify R with the subring of constant polynomials.
We have already noted that if R is an integral domain then the leading term of a
product of polynomials is the product of the leading terms of the factors. The following
is Proposition 4 of Section 7.2 which we record here for completeness.

Proposition 1. Let R be an integral domain. Then
(1) degree p(x)q(x) = degree p(x) + degree g(x) if p(x), g(x) are nonzero
(2) the units of R[x] are just the units of R
(3) R[x]is an integral domain.

Recall also that if R is an integral domain, the quotient field of R[x] consists of all
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quotients &x; where g (x) is not the zero polynomial (and is called the field of rational
q(x

functions in x with coefficients in R).
The next result describes a relation between the ideals of R and those of R[x].

Proposition 2. Let I be an ideal of the ring R and let () = I[x] denote the ideal of
R[x] generated by I (the set of polynomials with coefficients in /). Then

R[x1/(I) = (R/D)[x].
In particular, if [ is a prime ideal of R then (/) is a prime ideal of R[x].

Proof: Thereis a natural map ¢ : R[x] — (R/I)[x] given by reducing each of the
coefficients of a polynomial modulo /. The definition of addition and multiplication
in these two rings shows that ¢ is a ring homomorphism. The kernel is precisely the
set of polynomials each of whose coefficients is an element of I, which is to say that
ker ¢ = I[x] = (I), proving the first part of the proposition. The last statement follows
from Proposition 1, since if / is a prime ideal in R, then R/I is an integral domain,
hence also (R/I)[x] is an integral domain. This shows if I is a prime ideal of R, then
(1) is a prime ideal of R[x].

Note that it is not true that if I is a maximal ideal of R then (/) is a maximal ideal
of R[x]. However, if I is maximal in R then the ideal of R[x] generated by I and x is
maximal in R[x].

We now give an example of the “reduction homomorphism” of Proposition 2 which
will be useful on a number of occasions later (“reduction homomorphisms” were also
discussed at the end of Section 7.3 with reference to reducing the integers mod n) .

Example
Let R = Z and consider the ideal nZ of Z. Then the isomorphism above can be written
Z[x]/nZlx] = Z/nZ[x]

and the natural projection map of Z[ x]to Z/nZ[ x] by reducing the coefficients modulo n is
a ring homomorphism. If n is composite, then the quotient ring is not an integral domain.
If, however, n is a prime p, then Z/pZ is a field and so Z/pZ[x] is an integral domain (in
fact, a Euclidean Domain, as we shall see shortly). We also see that the set of polynomials
whose coefficients are divisible by p is a prime ideal in Z[x].

We close this section with a description of the natural extension to polynomial rings
in several variables.

Definition. The polynomial ring in the variables x,, x3, . . ., X, with coefficients in R,
denoted R[x;. x2, ..., x,], is defined inductively by

R[xl’ x2, LI ] xn] = R[XI, x21 MRS ] xn—l][xn]

This definition means that we can consider polynomials in n variables with coeffi-
cients in R simply as polynomials in one variable (say x,) but now with coefficients that
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are themselves polynomials in n — 1 variables. In a slightly more concrete formulation,
a nonzero polynomial in x,, x5, . . ., x,, with coefficients in R is a finite sum of nonzero
monomial terms, i.e., a finite sum of elements of the form

dy dy

dll
axy'xy’ ... x

n

where a € R (the coefficient of the term) and the d; are nonnegative integers. A monic

d d2 d,

term x;'x,? ... x;" is called simply a monomial and is the monomial part of the term

ax;'x;’ .. .x,‘f”. The exponent d; is called the degree in x; of the term and the sum
d:dl+d2+"'+dn

is called the degree of the term. The ordered n-tuple (d;, d, .. ., d,) is the multidegree
of the term. The degree of a nonzero polynomial is the largest degree of any of its
monomial terms. A polynomialis called homogeneous or a form if all its terms have the
same degree. If f is a nonzero polynomial in n variables, the sum of all the monomial
terms in f of degree k is called the homogeneous component of f of degree k. If f has
degree d then f may be written uniquely as the sum fo + f1 + - - - + f; where fj is
the homogeneous component of f of degree k, for 0 < k < d (where some f; may be
Z€ero).

Finally, to define a polynomial ring in an arbitrary number of variables with coef-
ficients in R we take finite sums of monomial terms of the type above (but where the
variables are not restricted to just xy, . .., x,), with the natural addition and multiplica-
tion. Alternatively, we could define this ring as the union of all the polynomial rings in
a finite number of the variables being considered.

Example

The polynomial ring Z[x, y] in two variables x and y with integer coefficients consists of
all finite sums of monomial terms of the form ax'y’ (of degree i + j). For example,

p(x,y) =2x3 + xy — y?

and
q(x,y) = —3xy +2y2 +x2y3

are both elements of Z[x, y], of degrees 3 and 5, respectively. We have
PO, y) +q(x,y) =2x3 —2xy + y* + x%y3
and
p(x, »)q(x,y) = —6x*y + 4x>y? + 2x5y% — 3222 4 5xy% + x3y* — 2y% — x2)°,

a polynomial of degree 8 To view this last polynomial, say, as a polynomial in y with
coefficients in Z[x] as in the definition of several variable polynomial rings above, we
would write the polynomial in the form

(=6xh)y + @x3 — 3x2)y? + 2x° 4+ 5x0)y* + (* —2)y* — (xD)y°.

The nonzero homogeneous components of f = f(x,y) = p(x, y)g(x, y) are the poly-
nomials f3 = —3x2y2 + 5xy° — 2y? (degree 4), fs = —6x*y + 4x3y? (degree 5),
f1=x3y* — x2y® (degree 7), and fg = 2x7y3 (degree 8).
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Each of the statements in Proposition 1 is true for polynomial rings with an arbitrary

number of variables. This follows by induction for finitely many variables and from
the definition in terms of unions in the case of polynomial rings in arbitrarily many
variables.

1.

10.

11.

12.

13.

14.

EXERCISES

Let p(x,y,2z) = 2x%y — 3xy3z + 4y22° and g(x, y,z) = Tx? 4+ 5x2y3z% — 3x223 be
polynomials in Z[x, y, z].

(a) Write each of p and g as a polynomial in x with coefficients in Z[y, z].

(b) Find the degree of each of p and q.

(c) Find the degree of p and g in each of the three variables x, y and z.

(d) Compute pg and find the degree of pq in each of the three variables x, y and z.

(e) Write pq as a polynomial in the variable z with coefficients in Z[x, y].

. Repeat the preceding exercise under the assumption that the coefficients of p and g are in

Z/3Z.

. If R is a commutative ring and xi, x2, ..., x, are independent variables over R, prove

that R[x,(1), Xz(2), - - - » X (m)] 1S isomorphic to R[x1, x2, ..., x,] for any permutation 7
of {1,2,...,n}.

. Prove that the ideals (x) and (x, y) are prime ideals in Q[x, y] but only the latter ideal is

amaximal ideal.

. Prove that (x, y) and (2. x, y) are prime ideals in Z[x, y] but only the latter ideal is a

maximal ideal.

. Prove that (x, y) is not a principal ideal in Q[x, y].
. Let Rbeacommutative ring with 1. Prove that a polynomial ring in more than one variable

over R is not a Principal Ideal Domain.

Let F be a field andlet R = Fx, x2y, x3y2, ey x"y"‘l, ...] be a subring of the poly-
nomial ring F[x, y].

(a) Prove that the fields of fractions of R and F[x, y] are the same.

(b) Prove that R contains an ideal that is not finitely generated.

. Prove that a polynomial ring in infinitely many variables with coefficients in any commu-

tative ring contains ideals that are not finitely generated.

Prove that the ring Z[x, x2, x3, - .. ]/(x1x2, x3x4, X5x6, . . . ) contains infinitely many min-
imal prime ideals (cf. Exercise 36 of Section 7.4).

Show that the radical of the ideal I = (x, y2) in Q[x, y] is (x, y) (cf. Exercise 30, Section
7.4). Deduce that I is a primary ideal that is not a power of a prime ideal (cf. Exercise 41,
Section 7.4).

Let R = Q[x,y,z] and let bars denote passage to Q[x, y, z]/(xy — z2). Prove that
P = (%,7) is a prime ideal. Show that Xy € P” but that no power of ¥ lies in P°. (This
shows P is a prime ideal whose square is not a primary ideal — cf. Exercise 41, Section
7.4).

Prove that the rings F[x, y]/(y?> — x) and F[x, y]/(y?> — x2) are not isomorphic for any
field F.

Let R be an integral domain and let i, j be relatively prime integers. Prove that the ideal
xi—yl)isa prime ideal in R[x, y]. [Consider the rmg homomorphism ¢ from R[x, y]
to R[¢] defined by mapping x to ¢/ and mapping y to . Show that an element of R[x, y]
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differs from an element in (x' — y/) by a polynomial f(x) of degree at most j — 1 in y
and observe that the exponents of ¢(x” y*) are distinct forQ < s < j ]

15. Let p(x1, x2, ..., x,) be a homogeneous polynomial of degree k in R[xy, ..., x,]. Prove
that forall A € R we have p(Axy, Ax2, ..., Axn) = A p(x1, x2, - ..., Xp).

16. Prove that the product of two homogeneous polynomials is again homogeneous.

17. Anideal I in R[xy, ..., x,] is called a homogeneous ideal if whenever p € I then each
homogeneous component of p is also in /. Prove that an ideal is a homogeneous ideal if
and only if it may be generated by homogeneous polynomials. [Use induction on degrees
to show the “if” implication.}

The following exercise shows that some care must be taken when working with polynomials
over noncommutative rings R (the ring operations in R[x] are defined in the same way as for
commutative rings R), in particular when considering polynomials as functions.

18. Let R be an arbitrary ring and let Func(R) be the ring of all functions from R to itself.
If p(x) € R[x] is a polynomial, let f, € Func(R) be the function on R defined by
fp(r) = p(r) (the usual way of viewing a polynomial in R[x] as defining a function on R
by “evaluating at r”).

(a) For fixed a € R, prove that “evaluation at a” is a ring homomorphism from Func(R)
to R (cf. Example 4 following Theorem 7 in Section 7.3).

(b) Prove that the map ¢ : R[x] — Func(R) definedby ¢(p(x)) = f, is not aring homo-
morphism in general. Deduce that polynomial identities need not give corresponding
identities when the polynomials are viewed as functions. [If R = H is the ring of real
Hamilton Quaternions show that p(x) = x2 + 1 factors as (x +i)(x — i), but that
p(j) =0 while (j +i)(j — i) #0.]

(c) For fixed a € R, prove that the composite “evaluation at a” of the maps in (a) and (b)
mapping R[x] to R is a ring homomorphism if and only if a is in the center of R.

9.2 POLYNOMIAL RINGS OVER FIELDS |

We now consider more carefully the situation where the coefficient ring is a field F.
We can define a norm on F[x] by defining N(p(x)) = degree of p(x) (where we set
N(0) = 0). From elementary algebra we know that we can divide one polynomial with,
say, rational coefficients by another (nonzero) polynomial with rational coefficients to
obtain a quotient and remainder. The same is true over any field.

Theorem 3. Let F be a field. The polynomial ring F[x] is a Euclidean Domain.
Specifically, if a(x) and b(x) are two polynomials in F[x] with b(x) nonzero, then
there are unique q(x) and r(x) in F[x] such that

a(x) = q(x)b(x) + r(x) with 7 (x) = 0 or degree r(x) < degree b(x) .

Proof: If a(x) is the zero polynomial then take g(x) = r(x) = 0. We may
therefore assume a(x) # 0 and prove the existence of g(x) and r(x) by induction on
n = degree a(x). Let b(x) have degree m. If n < m take g(x) = 0 and r(x) = a(x).
Otherwise n > m. Write

a(x) = anx" + an_lx"_l +---+ax+ap
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and
b(x) = b,x" + bm_lxmil + -+ bix + by.

Then the polynomial a’(x) = a(x) — Z—"x""" b(x) is of degree less than n (we have

arranged to subtract the leading term from a(x)). Note that this polynomial is well
defined because the coefficients are taken from a field and b,, # 0. By induction then,
there exist polynomials g’(x) and r(x) with

a(x) = q' (x)b(x) + r(x) with r(x) = 0 or degree r(x) < degree b(x).

an
Then, letting g (x) = ¢’ (x) + b—x”"" we have

a(x) = q(x)b(x) +r(x) with r(x) = O or degree r(x) < degree b(x)

completing the induction step.

As for the uniqueness, suppose g; (x) and r;(x) also satisfied the conditions of the
theorem. Then both a(x) — q(x)b(x) and a(x) — q;(x)b(x) are of degree less than
-m = degree b(x). The difference of these two polynomials, i.e., b(x)(g(x) — g1(x)) is
also of degree less than m. But the degree of the product of two nonzero polynomials
is the sum of their degrees (since F is an integral domain), hence g(x) — g1 (x) must be
0, that is, g(x) = g1(x). This implies r(x) = r;(x), completing the proof.

Corollary 4. If F is a field, then F[x] is a Principal Ideal Domain and a Unique
Factorization Domain.

Proof: This is immediate from the results of the last chapter.

Recall also from Corollary 8 in Section 8.2 that if R is any commutative ring such
that R[x] is a Principal Ideal Domain (or Euclidean Domain) then R must be a field.
We shall see in the next section, however, that R[x] is a Unique Factorization Domain
whenever R itself is a Unique Factorization Domain.

Examples

(1) By the above remarks the ring Z[x] is not a Principal Ideal Domain. As we have
already seen (Example 3 beginning of Section 7.4) the ideal (2, x) is not principal in
this ring.

(2) Q[x] is a Principal Ideal Domain since the coefficients lie in the field Q. The ideal
generated in Z[x] by 2 and x is not principal in the subring Z[x] of Q[x]. However, the
ideal generated in Q[x] is principal; in fact it is the entire ring (so has 1 as a generator)
since 2 is a unit in Q[x].

(3) If pis aprime, the ring Z/pZ[x] obtained by reducing Z[x] modulo the prime ideal
(p) is a Principal Ideal Domain, since the coefficients lie in the field Z/pZ. This
example shows that the quotient of a ring which is not a Principal Ideal Domain may
be a Principal Ideal Domain. To follow the ideal (2, x) above in this example, note
that if p = 2, then the ideal (2, x) reduces to the ideal (x) in the quotient Z/2Z][x],
which is a proper (maximal) ideal. If p # 2, then 2 is a unit in the quotient, so the
ideal (2, x) reduces to the entire ring Z/pZ[x].

(4) Q[x, y], the ring of polynomials in two variables with rational coefficients, is not a
Principal Ideal Domain since this ring is Q[x][y] and Q[x] is not a field (any element

300 Chap.9  Polynomial Rings



of positive degree is not invertible). It is an exercise to see that the ideal (x, y) is not a
principal ideal in this ring. We shall see shortly that Q[x, y] is a Unique Factorization
Domain.

We note that the quotient and remainder in the Division Algorithm applied to
a(x), b(x) € F[x] are independent of field extensions in the following sense. Suppose
the field F is contained in the field E and a(x) = Q(x)b(x) + R(x) for some O(x),
R(x) satisfying the conditions of Theorem 3 in E[x]. Write a(x) = q(x)b(x)+r(x) for
some g(x), r(x) € F[x] and apply the uniqueness condition of Theorem 3 in the ring
E[x] to deduce that Q(x) = g(x) and R(x) = r(x). In particular, b(x) divides a(x)
in the ring E[x] if and only if b(x) divides a(x) in F[x]. Also, the greatest common
divisor of a(x) and b(x) (which can be obtained from the Euclidean Algorithm) is the
same, once we make it unique by specifying it to be monic, whether these elements are
viewed in F[x] or in E[x].

EXERCISES

Let F be a field and let x be an indeterminate over F.

1. Let f(x) € F[x] be a polynomial of degree n > 1 and let bars denote passage to the
quotient F[x]/(f(x)). Prove that for each g(x) there is a unique polynomial go(x) of
degree < n — 1 such that g(x) = go(x) (equivalently, the elements 1,%....,x" larea
basis of the vector space F[x]/(f(x)) over F — in particular, the dimension of this space
is n). [Use the Division Algorithm.]

2. Let F be a finite field of order g and let f(x) be a polynomial in F[x] of degree n > 1.

Prove that F[x]/(f(x)) has g" elements. [Use the preceding exercise.]

Let f(x) be a polynomial in F[x]. Prove that F[x]/(f(x)) is a field if and only if f(x) is

irreducible. [Use Proposition 7, Section 8.2.]

4. Let F be a finite field. Prove that F[x] contains infinitely many primes. (Note that over
an infinite field the polynomials of degree 1 are an infinite set of primes in the ring of
polynomials).

5. Exhibit all theideals in the ring F[x]/(p(x)), where F is a field and p(x) is a polynomial

in F[x] (describe them in terms of the factorization of p(x)).

Describe (briefly) the ring structure of the following rings:

@ Z[x1/(2), ) Zx]/(x), (©) Z[x]/&?), @) Z[x,yl/(x2, 2, 2).

Show that o2 = 0 or 1 for every « in the last ring and determine those elements with

a? = 0. Determine the characteristics of each of these rings (cf. Exercise 26, Section7.3).

7. Determine all the ideals of the ring Z[x]/(2, x3 + 1).

8. Determine the greatest common divisor of a(x) = x3 —2and b(x) = x + 1 in Q[x] and
write it as a linear combination (in Q[x]) of a(x) and b(x).

9. Determine the greatest common divisor of a(x) = x> +2x3+x2+x+1 and the polynomial
b(x) = x> + x* + 2x3 +2x% 4+ 2x + 1 in Q[x] and write it as a linear combination (in
QIx]) of a(x) and b(x).

10. Determine the greatest commondivisorofa(x) = x344x2 yx—6andb(x) = x> —6x+5
in Q[x] and write it as a linear combination (in Q[x]) of a(x) and b(x).

3

6.

11. Suppose f (x) and g(x) are two nonzero polynomials in Q[ x] with greatest common divisor
d(x).
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(a) Given h(x) € Q[x], show that there are polynomials a(x), b(x) € Q[x] satisfying the
equation a(x) f (x) + b(x)g(x) = h(x) if and only if h(x) is divisible by d(x).
(b) If ap(x), bp(x) € Q[x] are particular solutions to the equation in (a), show that the
full set of solutions to this equation is given by
a(x) = ap(x) + m(x)%d
f(x)
d(x)

b(x) = bo(x) — m(x)

as m(x) ranges over the polynomials in Q[x]. [cf. Exercise 4 in Section 8.1]

12. Let F[x, y1, y2, ...] be the polynomial ring in the infinite set of variables x, y1, y2, ...
over the field F, and let I be the ideal (x — ylz, Y1 — y%, e i — yi2+1’ ...) in this ring.
Define R to be thering F[x, y1, y2,...]/1, so thatin R the square of each y; 4 is y; and
yl2 = x modulo I, i.e., x has a 2! th root, for every i. Denote the image of y; in R as xVZ,
Let R,, be the subring of R generated by F and x'/%",

(a) Provethat R € R C - - - and that R is the union of all R,,i.e., R = U2 | Ry.

(b) Provethat R, is isomorphic to a polynomial ring in one variable over F, so that R, is
aP.LD. Deduce that R is a Bezout Domain (cf. Exercise 7 in Section 8.2). [First show
that the ring S, = F[x, y1,..., ynl/(x — yf, y1— y%,...,yn_l — y2) is isomorphic
to the polynomial ring F[y,]. Then show any polynomial relation y, satisfies in R,
gives a corresponding relation in Sy for some N > n.]

(¢) Prove that the ideal generated by x, x1/2, x174, .. in R is not finitely generated (so
Risnota PID.).

13. This exercise introduces a noncommutative ring which is a “right” Euclidean Domain (and
a “left” Principal Ideal Domain) but is not a “left” Euclidean Domain (and not a “right”
Principal Ideal Domain). Let F be a field of characteristic p in which not every element is
a p™ power: F # FP (for example the field F = F,(t) of rational functions in the variable
t with coefficients in Fp, is such a field). Let R = F{x} be the “twisted” polynomial ring
of polynomials Y7_; a;x' in x with coefficientsin F with the usual (termwise) addition

n n n
Za,-xi + Zbixi = Z(ai +b)x'
i=0 i=0 i=0

but with a noncommutative multiplication defined by

n m n+m ;
(Za,-xi) ijxj) = Z Z a,-b]{’ ) %~
i=0 j=0

k=0 \i+j=k

This multiplication arises from defining xa = aPx for every a € F (so the powers of x
do not commute with the coefficients) and extending in a natural way. Let N be the norm
defined by taking the degree of a polynomial in R: N (f) = deg(f).

(a) Show that x¥a = a”*x* for every a € F and every integer k > 0 and that R is a
ring with this definition of multiplication. [Use the fact that (a + b)P = aP + b? for
every a, b € F since F has characteristic p, so also (a + b)pk =aP + bP* for every
a,beF.]

(b) Prove that the degree of a product of two elements of R is the sum of the degrees of
the elements. Prove that R has no zero divisors.
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(c) Prove that R is “right Euclidean” with respect to N, i.e., for any polynomials f, g € R
with g # 0, there exist polynomials g and r in R with

f=qg+r with r = 0 or deg(r) < deg(g).

Usethis to prove that every left ideal of R is principal.
(d) Let f = 6x forsome 6 € F, 6 ¢ FP and let g = x. Prove that there are no
polynomials g and r in R with

f=gq+r  withr =0ordeg(r) < deg(g),

so in particular R is not “left Euclidean” with respect to N. Prove that the right ideal
of R generated by x and 6x is not principal. Conclude that R is not “left Euclidean”
with respect to any norm.

9.3 POLYNOMIAL RINGS THAT ARE UNIQUE
FACTORIZATION DOMAINS

We have seen in Proposition 1 thatif R isanintegral domain then R[x] is also anintegral
domain. Also, such an R can be embedded in its field of fractions F (Theorem 15,
Section 7.5), so that R[x] € F[x] is a subring, and F[x] is a Euclidean Domain (hence
a Principal Ideal Domain and a Unique Factorization Domain). Many computations for
R[x] may be accomplished in F[x] at the expense of allowing fractional coefficients.
This raises the immediate question of how computations (such as factorizations of
polynomials) in F[x] can be used to give information in R[x].

For instance, suppose p(x) is a polynomial in R[x]. Since F[x] is a Unique
Factorization Domain we can factor p(x) uniquely into a product of irreducibles in
F[x]. It is natural to ask whether we can do the same in R[x], i.e., is R[x] a Unique
Factorization Domain? In general the answer is no because if R[x] were a Unique
Factorization Domain, the constant polynomials would have to be uniquely factored
into irreducible elements of R[x], necessarily of degree O since the degrees of products
add, that is, R would itself have to be a Unique Factorization Domain. Thus if R
is an integral domain which is not a Unique Factorization Domain, R[x] cannot be a
Unique Factorization Domain. On the other hand, it turns out that if R is a Unique
Factorization Domain, then R[x] is also a Unique Factorization Domain. The method
of proving this is to first factor uniquely in F[x] and then “clear denominators™ to obtain
a unique factorization in R[x]. The first step in making this precise is to compare the
factorization of a polynomial in F[x] to a factorization in R[x].

Proposition S. (Gauss’ Lemma) Let R be a Unique Factorization Domain with field of
fractions F and let p(x) € R[x]. If p(x) is reducible in F[x] then p(x) is reducible
in R[x]. More precisely, if p(x) = A(x)B(x) for some nonconstant polynomials
A(x), B(x) € F[x], then there are nonzero elements r, s € F such that r A(x) = a(x)
and s B(x) = b(x) bothliein R[x] and p(x) = a(x)b(x) is a factorization in R[x].

Proof: The coefficients of the polynomials on the right hand side of the equation
p(x) = A(x)B(x) are elements in the field F, hence are quotients of elements from

the Unique Factorization Domain R. Multiplying through by a common denominator
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for all these coefficients, we obtain an equation dp(x) = a’(x)b’(x) where now a’(x)
and b’ (x) are elements of R[x] and d is a nonzero element of R. If d is a unit in R, the
proposition is true with a(x) = d~'a’(x) and b(x) = b'(x). Assume d is not a unit and
write d as a product of irreducibles in R, say d = p; - - - p,. Since p is irreducible in
R, the ideal (p,) is prime (cf. Proposition 12, Section 8.3), so by Proposition 2 above,
the ideal p;R[x] is prime in R[x] and (R/p; R)[x] is an integral domain. Reducing the
equation dp(x) = a’(x)b'(x) modulo p;, we obtain the equation 0 = a'(x) P/ (x) in this
integral domain (the bars denote the images of these polynomials in the quotient ring),
hence one of the two factors, say a—’(x—) must be 0. But this means all the coefficients of
a’(x) are divisible by py, so that pl]a’(x) also has coefficients in R. In other words, in
the equation dp(x) = a’(x)b’(x) we can cancel a factor of p; from d (on the left) and
from either a’(x) or b'(x) (on the right) and still have anequationin R[x]. But now the
factor d on the left hand side has one fewer irreducible factors. Proceeding in the same
fashion with each of the remaining factors of d, we can cancel all of the factors of d into
the two polynomials on the right hand side, leaving an equation p(x) = a(x)b(x) with
a(x), b(x) € R[x] and with a(x), b(x) being F-multiples of A(x), B(x), respectively.
This completes the proof.

Note that we cannot prove that a(x) and b(x) are necessarily R-multiples of A(x),
B(x), respectively, because, for example, we could factor x? in Q[x] with A(x) = 2x
and B(x) = %x but no integer multiples of A(x) and B(x) give a factorization of x? in
Z|x].

The elements of the ring R become wunits in the Unique Factorization Domain
F[x] (the units in F[x] being the nonzero elements of F). For example, 7x factors
in Z[x] into a product of two irreducibles: 7 and x (so 7x is not irreducible in Z[x]),
whereas 7x is the unit 7 times the irreducible x in Q[x] (so 7x is irreducible in Q[x]).
The following corollary shows that this is essentially the only difference between the
irreducible elements in R[x] and those in F[x].

Corollary 6. Let R be a Unique Factorization Domain, let F beits field of fractions and
let p(x) € R[x]. Suppose the greatest common divisor of the coefficients of p(x) is 1.
Then p(x) is irreducible in R[x] if and only if itis irreducible in F[x]. In particular, if
p(x) is amonic polynomial that is irreducible in R[x], then p(x) is irreducible in F[x].

Proof: By Gauss’ Lemma above, if p(x) is reducible in F[x], then itis reducible
in R[x]. Conversely, the assumption on the greatest common divisor of the coefficients
of p(x) implies thatif it is reducible in R[x], then p(x) = a(x)b(x) where neither a(x)
nor b(x) are constant polynomials in R[x]. This same factorization shows that p(x) is
reducible in F[x], completing the proof.

Theorem 7. R is a Unique Factorization Domain if and only if R[x] is a Unique
Factorization Domain.

Proof: Wehaveindicated above that R[x] a Unique Factorization Domain forces R

to be a Unique Factorization Domain. Suppose conversely that R is a Unique Factoriza-
tion Domain, F is its field of fractions and p(x) is a nonzero element of R[x]. Let d be

304 Chap.9 Polynomial Rings



the greatest common divisor of the coefficients of p(x), so that p(x) = dp’(x), where
the g.c.d. of the coefficients of p’(x) is 1. Such a factorization of p(x) is unique up to a
change in d (so up to a unit in R), and since d can be factored uniquely into irreducibles
in R (and these are also irreducibles in the larger ring R[x]), it suffices to prove that
P’ (x) can be factored uniquely into irreducibles in R[x]. Thus we may assume that the
greatest common divisor of the coefficients of p(x) is 1. We may further assume p(x)
is not a unitin R[x], i.e., degree p(x) > 0.

Since F[x] is a Unique Factorization Domain, p(x) can be factored uniquely into
irreducibles in F[x]. By Gauss’ Lemma, such a factorization implies there is a factor-
ization of p(x) in R[x] whose factors are F-multiples of the factors in F[x]. Since the
greatest common divisor of the coefficients of p(x) is 1, the g.c.d. of the coefficients in
each of these factors in R[x] must be 1. By Corollary 6, each of these factors is an irre-
ducible in R[x]. This shows that p(x) can be written as a finite product of irreducibles
in R[x].

The uniqueness of the factorization of p(x) follows from the uniqueness in F[x].
Suppose

PE) =qi(x) - gr(x) = g1 (%) - - - gy (x)

are two factorizations of p(x) into irreducibles in R[x]. Since the g.c.d. of the co-
efficients of p(x) is 1, the same is true for each of the irreducible factors above —
in particular, each has positive degree. By Corollary 6, each g;(x) and qj’. (x) is an
irreducible in F[x]. By unique factorization in F[x], r = s and, possibly after re-
arrangement, g; (x) and g; (x) are associates in F[x] foralli € {1, ..., r}. Itremains to
show they are associates in R[x]. Since the units of F[x] are precisely the elements of
F> we need to consider when g (x) = 7¢’(x) for some g(x), ¢'(x) € R[x] and nonzero
elements a, b of R, where the greatest common divisor of the coefficients of each of
g(x) and ¢’ (x) is 1. Inthis case bg(x) = aq’(x); the g.c.d. of the coefficients on the left
hand side is » and on the right hand side is a. Since in a Unique Factorization Domain
the g.c.d. of the coefficients of a nonzero polynomial is unique up to units, a = ub for
some unit # in R. Thus g(x) = ug’(x) and so g(x) and ¢’(x) are associates in R as
well. This completes the proof.

Corollary 8. If R is a Unique Factorization Domain, then a polynomial ring in an
arbitrary number of variables with coefficients in R is also a Unique Factorization
Domain.

Proof: For finitely many variables, this follows by induction fromTheorem 7, since
a polynomial ring in n variables can be considered as a polynomial ring in one variable
with coefficients in a polynomial ring in n — 1 variables. The general case follows from
the definition of a polynomial ring in an arbitrary number of variables as the union of
polynomial rings in finitely many variables.

Examples

(@) Z[x], Z[x, y], etc. are Unique Factorization Domains. The ring Z[x] gives an example
of a Unique Factorization Domain that is not a Principal Ideal Domain.
(2) Similarly, Q[x], Q[x, y], etc. are Unique Factorization Domains.
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We saw earlier that if R is a Unique Factorization Domain with field of fractions
F and p(x) € R[x], then we can factor out the greatest common divisor d of the
coefficients of p(x) to obtain p(x) = dp’(x), where p’(x) is irreducible in both R[x]
and F[x]. Suppose now that R is an arbitrary integral domain with field of fractions F.
In R the notion of greatest common divisor may not make sense, however one might
still ask if, say, a monic polynomial which is irreducible in R[x] is still irreducible in
F[x] (i.e., whether the last statement in Corollary 6 is true).

Note first that if a monic polynomial p(x) is reducible, it must have a factorization
p(x) = a(x)b(x) in R[x] with both a(x) and b(x) monic, nonconstant polynomials
(recall that the leading term of p(x) is the product of the leading terms of the factors, so
the leading coefficients of both a(x) and b(x) are units — we can thus arrange these to
be 1). In other words, a nonconstant monic polynomial p(x) is irreducible if and only
if it cannot be factored as a product of two monic polynomials of smaller degree.

We now see that it is not true that if R is an arbitrary integral domain and p(x) is a
monic irreducible polynomial in R[x], then p(x) is irreducible in F[x]. For example,
let R = Z[2i] = {a + 2bi | a,b € Z} (a subring of the complex numbers) and let
p(x) = x2+1. Then the fraction field of Ris F = {a+bi | a, b € Q}. The polynomial
p(x) factors uniquely into a product of two linear factors in F[x]: x241 = (x—i)(x+i)
soin particular, p(x) is reducible in F[x]. Neither of these factors lies in R[x] (because
i ¢ R)so p(x) is irreducible in R[x]. In particular, by Corollary 6, Z[2i] is not a
Unique Factorization Domain.

EXERCISES

1. Let R be an integral domain with quotient field F and let p(x) be a monic polynomial in
R[x]. Assume that p(x) = a(x)b(x) where a(x) and b(x) are monic polynomials in F[x]
of smaller degree than p(x). Prove thatif a(x) ¢ R[x]then R is not a Unique Factorization
Domain. Deduce that Z[2+/2]is not a U.ED.

2. Prove that if f(x) and g(x) are polynomials with rational coefficients whose product
f(x)g(x) has integer coefficients, then the product of any coefficient of g(x) with any
coefficient of f(x) is an integer.

3. Let F be a field. Prove that the set R of polynomials in F[x] whose coefficient of x is
equal to O is a subring of F[x] and that R is not a U.ED. [Show that x6 = (x2)3 = (x3)?
gives two distinct factorizations of x® into irreducibles.)

4. Let R = Z+xQ[x] C Q[x] be the set of polynomials in x with rational coefficients whose
constant term is an integer.

(a) Prove that R is an integral domain and its units are +1.

(b) Show that the irreducibles in R are + p where p is a prime in Z and the polynomi-
als f(x) that are irreducible in Q[x] and have constant term 1. Prove that these
irreducibles are prime in R.

(c) Show that x cannot be written as the product of irreducibles in R (in particular, x is
not irreducible) and conclude that R is not a U.E.D.

(d) Show that x is not a prime in R and describe the quotient ring R/(x).

S. Let R = Z + xQ[x] c Q[x] be the ring considered in the previous exercise.

(a) Suppose that f(x), g(x) € Q[x] are two nonzero polynomials with rational coeffi-
cients and that x” is the largest power of x dividing both f(x) and g(x) in Q[x], (i.e.,
r is the degree of the lowest order term appearing in either f(x) or g(x)). Let f, and
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gr be the coefficients of x” in f(x) and g(x), respectively (one of which is nonzero
by definition of r). Then Z f, + Zg, = Zd, for some nonzerod, € Q (cf. Exercise 14
in Section 2.4). Prove that there is a polynomial d(x) € Q[x] thatis a g.c.d. of f(x)
and g(x) in Q[x] and whose term of minimal degree is d, x".

(b) Prove that f(x) = d(x)q1(x) and g(x) = d(x)g2(x) where g;(x) and gz(x) are
elements of the subring R of Q[x].

(c) Prove that d(x) = a(x)f(x) + b(x)g(x) for polynomials a(x), b(x) in R. [The
existence of a(x), b(x) in the Euclidean Domain @Q[x] is immediate. Use Exercise 11
in Section 2 to show that a(x) and b(x) can be chosen to lie in R.]

(d) Conclude from (a) and (b) that Rf (x)+ Rg(x) = Rd(x) in Q[x] and use this to prove
that R is a Bezout Domain (cf. Exercise 7 in Section 8.2).

(e) Show that (d), the results of the previous exercise, and Exercise 11 of Section 8.3
imply that R must contain ideals that are not principal (hence not finitely generated).
Prove that in fact I = xQ[x] is an ideal of R that is not finitely generated.

9.4 IRREDUCIBILITY CRITERIA

If R is a Unique Factorization Domain, then by Corollary 8 a polynomial ring in any
number of variables with coefficients in R is also a Unique Factorization Domain. It
is of interest then to determine the irreducible elements in such a polynomial ring,
particularly in the ring R[x] Inthe one-variable case, a nonconstant monic polynomial
is irreducible in R[x] if it cannot be factored as the product of two other polynomials of
smaller degrees. Determining whether a polynomial has factors is frequently difficult to
check, particularly for polynomials of large degree in several variables. The purpose of
irreducibility criteria is to give an easier mechanism for determining when some types
of polynomials are irreducible.

For the most part we restrict attention to polynomials in one variable where the
coefficient ring is a Unique Factorization Domain. By Gauss’ Lemma it suffices to
consider factorizations in F[x] where F is the field of fractions of R (although we
shall occasionally consider questions of irreducibility when the coefficient ring is just
an integral domain). The next proposition considers when there is a factor of degree
one (a linear factor).

Proposition 9. Let F be a field and let p(x) € F[x]. Then p(x) has a factor of degree
one if and only if p(x) has arootin F, i.e., there is an ¢ € F with p(a) = 0.

Proof: If p(x) has a factor of degree one, then since F is a field, we may assume
the factor is monic, i.e., is of the form (x — &) for some « € F. But then p(e) = 0.
Conversely, suppose p(a) = 0. By the Division Algorithm in F[x] we may write

px) =q(x)(x —a) +r
where r is a constant. Since p(«) = 0, r must be 0, hence p(x) has (x — «) as a factor.

Proposition 9 gives a criterion for irreducibility for polynomials of small degree:
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Proposition 10. A polynomial of degree two or three over a field F is reducible if and
only if it has a root in F.

Proof: This follows immediately from the previous proposition, since a polynomial
of degree two or three is reducible if and only if it has at least one linear factor.

The next result limits the possibilities for roots of polynomials with integer coef-
ficients (it is stated for Z[x] for convenience although it clearly generalizes to R[x],
where R is any Unique Factorization Domain).

Proposition 11. Let p(x) = a,x" + a,_1x"~! + - -- + ap be a polynomial of degree
_n with integer coefficients. If r/s € Q is in lowest terms (i.e., r and s are relatively
prime integers) and r/s is aroot of p(x), then r divides the constant term and s divides
the leading coefficient of p(x): r | ap and s | a,. In particular, if p(x) is a monic
polynomial withinteger coefficients and p(d) # Oforall integers d dividing the constant
term of p(x), then p(x) has no roots in Q.

Proof: By hypothesis, p(r/s) = 0 = a,(r/s)" + a,—1(r/s)" ! + - - - + ag. Multi-
plying through by s” gives

0=anr" +au_1r" 's+ - +aps".

Thus a,r* = s(—a,_1r" ! — - - - — gps" 1), so s divides a,r". By assumption, s is
relatively prime to r and it follows that s | a,,. Similarly, solving the equation for aps”
shows that r | ap. The last assertion of the proposition follows from the previous ones.

Examples

(1) The polynomial x3 — 3x — 1 is irreducible in Z[x]. To prove this, by Gauss’ Lemma
and Proposition 10 it suffices to show it has no rational roots. By Proposition 11 the
only candidates for rational roots are integers which divide the constant term 1, namely
+1. Substituting both 1 and —1 into the polynomial shows that these are not roots.

(2) For p any prime the polynomials x2 — p and x3 — p are irreducible in Q[x]. This is
because they have degrees < 3 so it suffices to show they have no rational roots. By
Proposition 11 the only candidates for roots are +1 and + p, but none of these give 0
when they are substituted into the polynomial.

(3) The polynomial x2 + 1 is reducible in Z/27Z] x] since it has 1 as a root, and it factors
as (x + 1)2.

(4) The polynomial x2 + x + 1 is irreducible in Z/2Z[ x] since it does not have a root in
Z/2Z:0*+0+1=1and124+1+1=1.

(5) Similarly, the polynomial x3 + x + 1 is irreducible in Z/2Z[x].

This technique is limited to polynomials of low degree because it relies on the
presence of a factor of degree one. A polynomial of degree 4, for example, may be
the product of two irreducible quadratics, hence be reducible but have no linear factor.
One fairly general technique for checking irreducibility uses Proposition 2 above and
consists of reducing the coefficients modulo some ideal.
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Proposition 12. Let I be a proper ideal in the integral domain R and let p(x) be a
nonconstant monic polynomial in R[x]. If the image of p(x) in (R/I)[x] cannot be
factored in (R/I)[x] into two polynomials of smaller degree, then p(x) is irreducible
in R[x].

Proof: Suppose p(x) cannot be factored in (R/I)[x] but that p(x) is reducible
in R[x]. As noted at the end of the preceding section this means there are monic,
nonconstant polynomials a(x) and b(x) in R[x] such that p(x) = a(x)b(x). By
Proposition 2, reducing the coefficients modulo I gives a factorization in (R/I)[x]
with nonconstant factors, a contradiction.

This proposition indicates that if it is possible to find a proper ideal I such that
the reduced polynomial cannot be factored, then the polynomial is itself irreducible.
Unfortunately, there are examples of polynomials even in Z[x] which are irreducible
but whose reductions modulo every ideal are reducible (so their irreducibility is not
detectable by this technique). For example, the polynomial x* + 1 is irreducible in
Z[x] but is reducible modulo every prime (we shall verify this in Chapter 14) and the
polynomial x* — 72x2 + 4 is irreducible in Z[x] but is reducible modulo every integer.

Examples

(1) Consider the polynomial p(x) = x2+x+1inZ[x]. Reducing modulo 2, we see from
Example 4 above that p(x) is irreducible in Z[x]. Similarly, x3 + x + 1is irreducible
in Z[x] because it is irreducible in Z/2Z[x].

(2) The polynomial x2 + 1 is irreducible in Z[x] since it is irreducible in Z/3Z[x] (no
root in Z/3Z), but is reducible mod 2. This shows that the converse to Proposition 12
does not hold.

(3) The idea of reducing modulo an ideal to determine irreducibility can be used also
in several variables, but some care must be exercised. For example, the polynomial
x2 4+ xy + 1 in Z[x, y] is irreducible since modulo the ideal (y) it is x2 + 1 in Z[x],
which is irreducible and of the same degree. In this sort of argument it is necessary to
be careful about “collapsing.” For example, the polynomial xy + x + y + 1 (which
is (x + 1)(y + 1)) is reducible, but appears irreducible modulo both (x) and (y). The
reason for this is that nonunit polynomials in Z[x, y] can reduce to units in the quotient.
To take account of this it is necessary to determine which elements in the original ring
become units in the quotient. The elements in Z[x, y] which are units modulo (y), for
example, are the polynomials in Z[x, y] with constant term %1 and all nonconstant
terms divisible by y. The fact that x2 + xy + 1 and its reduction mod (y) have the
same degree therefore eliminates the possibility of a factor which is a unit modulo (y),
but not a unit in Z[x, y] and gives the irreducibility of this polynomial.

A special case of reducing modulo an ideal to test for irreducibility which is fre-
quently useful is known as Eisenstein’s Criterion (although originally proved earlier by
Schénemann, so more properly known as the Eisenstein-Schonemann Criterion):

Proposition 13. (Eisenstein’s Criterion) Let P be a prime ideal of the integral domain
Randlet f(x) = x"+a,_1x" ! +---+a;x +ag be apolynomial in R[x] (here n > 1).
Suppose a,_1, - . ., a1, ap are all elements of P and suppose ag is not an element of P2.
Then f (x) is irreducible in R[x].

,
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Proof: Suppose f(x) were reducible, say f(x) = a(x)b(x) in R[x], where a(x)
and b(x) are nonconstant polynomials. Reducing this equation modulo P and using
the assumptions on the coefficients of f(x) we obtain the equation x” = a(x)b(x) in
(R/ P)[x], where the bar denotes the polynomials with coefficients reduced mod P.
Since P is a prime ideal, R/ P is an integral domain, and it follows that both -a_(x_) and
b(x) have 0 constant term, i.e., the constant terms of both a(x) and b(x) are elements
of P. But then the constant term ap of f(x) as the product of these two would be an
element of P2, a contradiction.

Eisenstein’s Criterion is most frequently applied to Z[x] so we state the result
explicitly for this case:

Corollary 14. (Eisenstein’s Criterion for Z[x]) Let p be a prime in Z and let

fx) = x"+a_1x" "+ .- +a;x +ayp € Z[x], n > 1. Suppose p divides a;
foralli € {0, 1, ..., n—1} but that p2 does not divide ay. Then f(x) is irreducible in
both Z[x] and Q[x].

Proof: This is simply a restatement of Proposition 13 in the case of the prime ideal
(p) in Z together with Corollary 6.

Examples

(1) The polynomial x* + 10x + 5 in Z[x] is irreducible by Eisenstein’s Criterion applied
for the prime 5. '

(2) Ifaisany integer which is divisible by some prime p but not divisible by p?, then x" —a
isirreducible in Z[x] by Eisenstein’s Criterion. In particular, x" — p is irreducible for
all positive integers n and so for n > 2 the n'™ roots of p are not rational numbers (i.e.,
this polynomial has no root in Q).

(3) Consider the polynomial f(x) = x* 4+ 1 mentioned previously. Eisenstein’s Criterion
does not apply directly to f(x). The polynomial g(x) = f(x+ ) is (x + 1)* +1, i.e.,
x% + 4x3 + 6x2 + 4x + 2, and Eisenstein’s Criterion for the prime 2 shows that this
polynomialis irreducible. It follows then that f (x) must also be irreducible, since any
factorization for f(x) would provide a factorization for g(x) (just replace x by x + 1
in each of the factors). This example shows that Eisenstein’s Criterion can sometimes
be used to verify the irreducibility of a polynomial to which it does not immediately

apply.
(4) As another example of this, let p be a prime and consider the polynomial
P—1
¢p(x)=x 1 =xP V4 xP 24 x+1,
x —_—

an example of a cyclotomic polynomial which we shall consider more thoroughly in
Part IV. Again, Eisenstein’s Criterion does not immediately apply, but it does apply
for the prime p to the polynomial

x+1P -1

-1
¢p(x+1)=f:xp_]+pxp—2+...+M

2
since all the coefficients except the first are divisible by p by the Binomial Theorem.
As before, this shows &, (x) is irreducible in Z[x].

(5) Asan example of the use of the more general Eisenstein’s Criterion in Proposition 13
we mimic Example 2 above. Let R = Q[x] and let n be any positive integer. Consider

x 4+ p € Z[x]
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the polynomial X” — x in the ring R[X]. The ideal (x) is prime in the coefficient
ring R since R/(x) = Q[x]/(x) is the integral domain Q. Eisenstein’s Criterion for
the ideal (x) of R applies directly to show that X" — x is irreducible in R[X]. Note
that this construction works with Q replaced by any field or, indeed, by any integral
domain.

There are now efficient algorithms for factoring polynomials over certain fields.

For polynomials with integer coefficients these algorithms have been implemented in a
number of computer packages. An efficient algorithm for factoring polynomials over
Fp, called the Berlekamp Algorithm, is described in detail in the exercises at the end of
Section 14.3.

EXERCISES

1. Determine whether the following polynomials are irreducible in the rings indicated. For

3

4

those that are reducible, determine their factorization into irreducibles. The notation F,
denotes the finite field Z/ pZ, p a prime.

@) x*+x+1inF[x).

() x3 +x+ 1inF3[x].

(c) x*+1inFs[x].

(d) x*+10x% 4+ 1 in Z[x].

. Prove that the following polynomials are irreducible in Z[x]:

@ x*—4x3+6
() x®+30x5 — 15x3 + 6x — 120
(©) x*+4x3 + 6x2 + 2x + 1 [Substitute x — 1 for x.]

2P — 2P
) (x+—)___, where p is an odd prime.

b

Show that the polynomial (x—1)(x—2) - - - (x—n) — 1 is irreducible over Z foralln > 1.
[ If the polynomial factors consider the values of the factors at x = 1,2, ...,n.]
Show that the polynomial (x — 1)(x — 2) - - - (x —n) + 1 is irreducible over Z for alln > 1,
n#4.

. Find all the monic irreducible polynomials of degree < 3 in [';[x], and the same in F3[x].
. Construct fields of each of the following orders: (@) 9, (b)49, (c)8, (d) 81 (you

may exhibit these as F[x]/(f(x)) forsome F and f). [Use Exercises 2 and 3 in Section 2.]

. Prove that R[x]/(x2 + 1) is a field which is isomorphic to the complex numbers.
. Provethat K; = Fy1[x]/(x2 4+ 1) and K = Fy;[y]/(y? 4 2y + 2) are both fields with 121

elements. Prove that the map which sends the element p(x) of K tothe element p(y+ 1)
of K7 (where p is any polynomial with coefficients in [F1;) is well defined and gives a ring
(hence field) isomorphism from K) to K.

. Prove that the polynomial x2 — /2 is irreducible over Z[+/2 ] (you may use the fact that

10.

Z[+/2] is a U.ED. — cf. Exercise 9 of Section 8.1).

Prove that the polynomial p(x) = x* — 4x2 + 8x + 2 is irreducible over the quadratic
field F = Q(v/—2) = {a + b+/=2 | a, b € Q). [First use the method of Proposition 11
for the Unique Factorization Domain Z[+/—2 ] (cf. Exercise 8, Section 8.1) to show that if
a € Z[/—2]is aroot of p(x) then « is a divisor of 2 in Z[+/—2 ]. Conclude that o must
be +1, £4/—2 or £2, and hence show p(x) has no linear factor over F. Show similarly
that p(x) is not the product of two quadratics with coefficients in F.]
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11. Prove that x2 4 y? — 1 is irreducible in Q[x, y].
12. Prove that x® ! 4 x"~2 4 ... 4 x + 1 is irreducible over Z if and only if n is a prime.
13. Prove that x3 + nx + 2 is irreducible over Z for all integers n # 1, —3, -5.

14. Factor each of the two polynomials: x® — 1 and x® — 1 into irreducibles over each of the
following rings: (@) Z, (b) Z/2Z, (c)Z/3Z.

15. Prove that if F is a field then the polynomial X” — x which has coefficients in the ring
F[[x]] of formal power series (cf. Exercise 3 of Section 7.2) is irreducible over F[[x]].
[Recall that F[[x]] is a Euclidean Domain — cf. Exercise 5, Section 7.2 and Example 4,
Section 8.1.]

16. Let F be a field and let f(x) be a polynomial of degree n in F[x]. The polynomial
g(x) = x" f(1/x) is called the reverse of f(x).
(a) Describe the coefficients of g in terms of the coefficients of f.
(b) Prove that f is irreducible if and only if g is irreducible.

17. Prove the following variant of Eisenstein’s Criterion: let P be a prime ideal in the Unique
Factorization Domain R and let f (x) = a,x" +ap_1x" 1 +---4+ajx+agbea polynomial
in R[x],n > 1. Supposea, ¢ P, a,—y,...,a0 € P and gy ¢ P2. Prove that fx)is
irreducible in F[x], where F is the quotient field of R.

18. Show that 6x3 + 14x3 — 21x 4 35 and 18x5 — 30x2 4 120x + 360 are irreducible in Q[x].

19. Let F be a field and let f(x) = anx" + an_1x""1 + - - - +ap € F[x). The derivative,
D, (f(x)), of f(x) is defined by

Dx(f(x)) = napx" ' + n=Dap_1x" 2 +-- - +a

where, as usual, na = a+a+-- -+ a (n times). Note that D, (f(x)) is again a polynomial
with coefficients in F.

The polynomial f(x) is said to have a multiple root if there is some field E containing F
and some « € E such that (x — «)? divides f(x) in E[x]. For example, the polynomial
f(x) = (x — 1)%(x — 2) € Q[x] has @ = 1 as a multiple root and the polynomial
f(x) =x*4+2x24+1 = (x2 4+ 1)? € R[x] has @ = +i € C as multiple roots. We shall
prove in Section 13.5 that a nonconstant polynomial f (x) has a multiple root if and only
if f(x) is not relatively prime to its derivative (which can be detected by the Euclidean

Algorithm in F[x]). Use this criterion to determine whether the following polynomials

have multiple roots:

(@ x3-3x—-2€eQx]

M) x> +3x+2 € Qx]

(c) x° —4x% +6x3 +4x2 — 12x +9 € Q[x]

(d) Show for any prime p and any a € [F,, that the polynomial x? — a has a multiple root.

20. Show that the polynomial f(x) = x in Z/6Z[x] factors as (3x 4 4)(4x + 3), hence is not
an irreducible polynomial.

(a) Show that the reduction of f(x) modulo both of the nontrivial ideals (2) and (3) of
Z/6Z is an irreducible polynomial, showing that the condition that R be an integral
domain in Proposition 12 is necessary.

(b) Show that in any factorization f(x) = g(x)h(x) in Z/6Z[x] the reduction of g(x)
modulo (2) is either 1 or x and the reduction of 4 (x) modulo (2) is then either x or 1,
and similarly for the reductions modulo (3). Determine all the factorizations of f (x)
in Z/6Z[x]. [Use the Chinese Remainder Theorem.]

(c) Show that the ideal (3, x) is a principal ideal in Z/6Z[x].

(d) Show that over the ring Z/30Z[x] the polynomial f(x) = x has the factorization
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f(x) = 10x+21)(15x + 16)(6x +25). Prove that the product of any of these factors
is again of the same degree. Prove that the reduction of f(x) modulo any prime
in Z/30Z is an irreducible polynomial. Determine all the factorizations of f(x) in
Z/30Z[x]. [Consider the reductions modulo (2), (3) and (5) and use the Chinese
Remainder Theorem.]

(e) Generalize part (d) to Z/nZ[x] where n is the product of k distinct primes.

9.5 POLYNOMIAL RINGS OVER FIELDS I

Let F be a field. We prove here some additional results for the one-variable polynomial
ring F[x]. The first is a restatement of results obtained earlier.

Proposition 15. The maximal ideals in F[x] are the ideals (f(x)) generated by irre-
ducible polynomials f(x). In particular, F[x]/(f(x)) is a field if and only if f(x) is
irreducible.

Proof: This follows from Proposition 7 of Section 8.2 applied to the Principal Ideal
Domain F[x].

Proposition 16. Let g(x) be a nonconstant element of F[x] and let
g(x) = fi(x)" fa(x)" - - - fr(x)™

be its factorization into irreducibles, where the f;(x) are distinct. Then we have the
following isomorphism of rings:

Fx]/(g(x)) = Fx]/(fi(x)") x FIx)/(f2(x)"?) x --- X F[x]/(fi(x)™).

Proof: This follows from the Chinese Remainder Theorem (Theorem 7.17), since
the ideals (f;(x)™) and (fj(x)") are comaximal if f;(x) and f;(x) are distinct (they
are relatively prime in the Euclidean Domain F[x], hence the ideal generated by them
is F[x]).

The next result concerns the number of roots of a polynomial over a field F. By
Proposition 9, a root « corresponds to a linear factor (x — ) of f(x). If f(x) is divisible
by (x — o)™ but not by (x — a)™*!, then « is said to be a root of multiplicity m.

Proposition 17. If the polynomial f(x) has roots ay, &y, . .., o in F (not necessarily
distinct), then f(x) has (x — 1) - - - (x — o) as a factor. In particular, a polynomial
of degree n in one variable over a field F has at most n roots in F, even counted with
multiplicity.

Proof: The first statement follows easily by induction from Proposition 9. Since
linear factors are irreducible, the second statement follows since F[x] is a Unique
Factorization Domain.

This last result has the following interesting consequence.
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Proposition 18. A finite subgroup of the multiplicative group of a field is cyclic. In
particular, if F is a finite field, then the multiplicative group F* of nonzero elements
of F is a cyclic group.

Proof: We give a proof of this result using the Fundamental Theorem of Finitely
Generated Abelian Groups (Theorem 3 in Section 5.2). A more number-theoretic proof
is outlined in the exercises, or Proposition 5 in Section 6.1 may be used in place of
the Fundamental Theorem. By the Fundamental Theorem, the finite subgroup can be
written as the direct product of cyclic groups

ZImZ X Z[nyZ X - - - X Z]mZ

where n; |ﬁ‘nk_1 | - | n; | n. In general, if G is a cyclic group and d | |G| then G
contains precisely d elements of order dividing d. Since n; divides the order of each
of the cyclic groups in the direct product, it follows that each direct factor contains
n; elements of order dividing n,. If k were greater than 1, there would therefore be a
total of more than n; such elements. But then there would be more than »; roots of the
polynomial x"* — 1 in the field F, contradicting Proposition 17. Hence k = 1 and the
group is cyclic.

Corollary 19. Let p be aprime. The multiplicative group (Z/ pZ)* of nonzero residue
classes mod p is cyclic.

Proof: This is the multiplicative group of the finite field Z/ pZ.

1 %2 |

Corollary 20. Letn > 2 be an integer with factorization n = p}' p3?--- p% in Z, where
D1, - - -, Dr are distinct primes. We have the following isomorphisms of (multiplicative)
groups:

D) @/nZ)* = (Z/py"L)* x (Z/p3'L)y* X - - - X (Z/ p}r L)

(2) (Z/2*Z)* is the direct product of a cyclic group of order 2 and a cyclic group
of order2°~2, foralla > 2

(3) (Z/p®Zy* is a cyclic group of order p*~!(p — 1), for all odd primes p.

Remark: These isomorphisms describe the group-theoretic structure of the automor-
phism group of the cyclic group, Z,,, of order n since Aut(Z,) = (Z/nZ)* (cf. Propo-
sition 16 in Section 4.4). In particular, for p a prime the automorphism group of the
cyclic group of order p is cyclic of order p — 1.

Proof: This is mainly a matter of collecting previous results. The isomorphism in
(1) follows from the Chinese Remainder Theorem (see Corollary 18, Section 7.6). The
isomorphism in (2) follows directly from Exercises 22 and 23 of Section 2.3.

For p an odd prime, (Z/p®Z)* is an abelian group of order p*~!(p — 1). By
Exercise 21 of Section 2.3 the Sylow p-subgroup of this group is cyclic. The map

Z/p“Z — Z/pZ definedby a+ (P*)+—>a+(p)
is a ring homomorphism (reduction mod p) which gives a surjective group homo-
morphism from (Z/p“Z)* onto (Z/pZ)*. The latter group is cyclic of order p — 1
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(Corollary 19). The kernel of this map is of order p*~!, hence for all primes g # p, the
Sylow g-subgroup of (Z/p*Z)>* maps isomorphically into the cyclic group (Z/pZ)*.
All Sylow subgroups of (Z/p®Z)* are therefore cyclic, so (3) holds, completing the
proof.

EXERCISES

1. Let F be a field and let f (x) be a nonconstant polynomial in F[x]. Describe the nilradical
of F[x]/(f(x)) in terms of the factorization of f(x) (cf. Exercise 29, Section 7.3).

2. For each of the fields constructed in Exercise 6 of Section 4 exhibit a generator for the
(cyclic) multiplicative group of nonzero elements.

3. Let p be an odd prime in Z and let n be a positive integer. Prove thatx” — p is irreducible
over Z[i]. [Use Proposition 18 in Chapter 8 and Eisenstein’s Criterion.]

4. Prove that x3 + 12x2 + 18x + 6 is irreducible over Z[i]. [Use Proposition 8.18 and
Eisenstein’s Criterion.]

5. Let ¢ denote Euler’s g-function. Prove the identity Zdln ¢(d) = n, where the sum is
extended over all the divisors d of n. [First observe that the identity is valid whenn = p™
is the power of a prime p since the sum telescopes. Write n = p™n’ where p does not
divide n’. Provethaty_,, ¢(d) = 3_ g pm 9(d") 3_ v (d’) by multiplying out the right
hand side and using the multiplicativity ¢(ab) = ¢(a)¢(b) when a and b are relatively
prime. Use induction to complete the proof. This problem may be done alternatively
by letting Z be the cyclic group of order n and showing that since Z contains a unique
subgroup of order d for each d dividing », the number of elements of Z of order d is ¢(d).
Then | Z] is the sum of ¢(d) as d runs over all divisors of n.]

6. Let G be a finite subgroup of order n of the multiplicative group F* of nonzero elements
of the field F. Let ¢ denote Euler’s ¢-function and let v (d) denote the number of elements
of G of order d. Prove that ¥(d) = ¢(d) for every divisor d of n. In particular conclude
that y(n) > 1, so that G is a cyclic group. [Observe that for any integer N > 1 the
polynomial x¥ — 1 has at most N roots in F. Conclude that for any integer N we have
2 gy ¥(d) < N. Since Zd| ~ ©(d) = N by the previous exercise, show by induction that
¥ (d) < ¢(d) for every divisor d of n. Since Zd|n Yyd)=n= Zd|n ¢(d) show that this
implies ¥ (d) = ¢(d) for every divisor d of n.]

Prove that the additive and multiplicative groups of a field are never isomorphic. [Consider
three cases: when |F| is finite, when —1 # 1 in F, and when —1 = 1in F.]

N

9.6 POLYNOMIALS IN ASEVERAL VARIABLES OVER A FIELD
AND GROBNER BASES

In this section we consider polynomials in many variables, present some basic computa-
tional tools, and indicate some applications. The results of this section are not required
in Chapters 10 through 14. Additional applications will be given in Chapter 15.

We proved in Section 2 that a polynomial ring F[x] in a variable x over a field F
is a Euclidean Domain, and Corollary 8 showed that the polynomial ring F[x, ..., x,]
is a U.ED. However it follows from Corollary 8 in Section 8.2 that the latter ring is
not a PI.D. unless n = 1. Our first result below shows that ideals in such polynomial
rings, although not necessarily principal, are always finitely generated. General rings
with this property are given a special name:
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Definition. A commutative ring R with 1 is called Noetherian if every ideal of R is
finitely generated.

Noetherian rings will be studied in greater detail in Chapters 15 and 16. In this
section we develop some of the basic theory and resulting algorithms for working with
(finitely generated) ideals in F[xy, ..., x.].

As we saw in Section 1, a polynomial ring in n variables can be considered as a
polynomial ring in one variable with coefficients in a polynomial ring in n — 1 variables.
By following this inductive approach—as we did in Theorem 7 and Corollary 8—we
can deduce that F[x;, x2, .. ., x,] is Noetherian from the following more general result.

Theorem 21. (Hilbert's Basis Theorem) If R is a Noetherian ring then so is the poly-
nomial ring R[x].

Proof: Let I bean ideal in R[x] and let L be the set of all leading coefficients of
the elements in /. We first show that L is an ideal of R, as follows. Since I contains
the zero polynomial, 0 € L. Let f = ax? + - - - and g = bx® + - - - be polynomials in
I of degrees d, e and leading coefficients a, b € R. Then for any r € R either ra — b
is zero or it is the leading coefficient of the polynomial rx¢ f — x%g. Since the latter
polynomial is in / we have ra — b € L, which shows L is an ideal of R. Since R is

assumed Noetherian, the ideal L in R is finitely generated, say by a1, a3, ..., a, € R.
Foreachi = 1, ..., n let f; be an element of 7 whose leading coefficient is a;. Let ¢;
denote the degree of f;, and let N be the maximum of ey, e;, ..., en.

Foreachd € {0, 1,..., N — 1}, let Ly be the set of all leading coefficients of
polynomials in I of degree d together with 0. A similar argument as that for L shows
each L, is also an ideal of R, again finitely generated since R is Noetherian. For each
nonzero ideal Ly let by, by, ..., by, € R be aset of generators for Ly, and let fy;
be a polynomial in I of degree d with leading coefficient b ;.

We show that the polynomials fi, ..., f, together with all the polynomials f, ; for
all the nonzero ideals L, are a set of generators for /, i.e., that

I'={fi,.... fidU{fei|0<d <N, 1 <i<ng}).

By construction, the ideal I’ on the right above is contained in I since all the generators
were chosen in I. If I' # I, there exists a nonzero polynomial f € I of minimum
degree with f ¢ I'. Letd = deg f and let a be the leading coefficient of f.

Suppose first thatd > N. Since a € L we may write a as an R-linear combination
of the generatorsof L: a = riay +---+ma,. Theng = nx4=e fi+--. +Fpxden fnis
an element of I’ with the same degree d and the same leading coefficient a as f. Then
f — g € I is a polynomial in I of smaller degree than f. By the minimality of f, we
must have f — g =0, s0 f = g € I, a contradiction.

Suppose next that d < N. In this case a € L, for some d < N, and so we may
writea = ribg1 +- - -+ ry,b,, forsomer; € R. Theng=rify1+ -+ ry, fn,isa
polynomial in I’ with the same degree d and the same leading coefficient a as f, and
we have a contradiction as before.

It follows that I = I is finitely generated, and since I was arbitrary, this completes
the proof that R[x] is Noetherian.
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Since a field is clearly Noetherian, Hilbert’s Basis Theorem and induction imme-
diately give:

Corollary 22. Every ideal in the polynomial ring F[x;, x, . .., x,,] with coefficients
from a field F is finitely generated.

If I is an ideal in F[x, ..., x,] generated by a (possibly infinite) set S of polyno-
mials, Corollary 22 shows that [ is finitely generated, and in fact I is generated by a
finite number of the polynomials from the set S (cf. Exercise 1).

Asthe proof of Hilbert’s Basis Theorem shows, the collection of leading coefficients
of the polynomials in an ideal I in R[x] forms an extremely useful ideal in R that can
be used to understand /. This suggests studying “leading terms” in F[x;, x2, -. ., X,]
more generally (and somewhat more intrinsically). To do this we need to specify a
total ordering on the monomials, since without some sort of ordering we cannot in
general tell which is the “leading” term of a polynomial. We implicitly chose such an
ordering in the inductive proof of Corollary 22—we first viewed a polynomial f as a
polynomial in x; with coefficients in R = F[x,, ..., x,], say, then viewed its “leading
coefficient” in F[x, ..., x,] as a polynomial in x, with coefficients in F[xs, ..., x,],
etc. This is an example of a lexicographic monomial ordering on the polynomial
ring F[xi, ..., x,] which is defined by first declaring an ordering of the variables, for

example x; > x; > --- > x, and then declaring that the monomial term Axj'x3? - - - x

n
with exponents (ay, ay, . . -, a,) has higher order than the monomial term Bxi’1 xé’ .. -x,’f"
with exponents (by, by, ..., b,) if the first component where the n-tuples differ has
a; > b;. This is analogous to the ordering used in a dictionary (hence the name),
where the letter “a” comes before “b” which in turn comes before “c”, etc., and then
“aardvark” comes before “abacus” (although the ‘word’ a®> = aa comes before a in
the lexicographical order). Note that the ordering is only defined up to multiplication
by units (elements of F*) and that multiplying two monomials by the same nonzero
monomial does not change their ordering. This can be formalized in general.

Definition. A monomial ordering is a well ordering “>" on the set of monomials that
satisfies mm; > mm;, whenever m; > m, for monomials m, m;, m,. Equivalently,
a monomial ordering may be specified by defining a well ordering on the n-tuples
o = (a,...,a,) € Z" of multidegrees of monomials Ax;" -+ - x5 that satisfies
aty=>p+yifa=>p.

It is easy to show for any monomial ordering that m > 1 for every monomial m
(cf. Exercise 2). It is not difficult to show, using Hilbert’s Basis Theorem, that any total
ordering on monomials which for every monomial m satisfies m > 1 and mm; > mm,
whenever m; > m,, is necessarily a well ordering (hence a monomial ordering)—this
equivalent set of axioms for amonomial ordering may be easier to verify. For simplicity
we shall limit the examples to the particularly easy and intuitive lexicographic ordering,
but it is important to note that there are useful computational advantages to using other
monomial orderings in practice. Some additional commonly used monomial orderings
are introduced in the exercises.
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As mentioned, once we have a monomial ordering we can define the leading term
of a polynomial:

Definition. Fix a monomial ordering on the polynomial ring F[x1, x2, ..., x,].
(1) The leading term of a nonzero polynomial f in F[x), x,, ..., x,], denoted
LT(f), is the monomial term of maximal order in f and the leading term of
f = 0is 0. Define the multidegree of f, denoted 3(f), to be the multidegree
of the leading term of f.
(2) If I isanidealin F[x;, x2, ..., X,], the ideal of leading terms, denoted LT (1),
is the ideal generated by the leading terms of all the elements in the ideal, i.e.,

LT =LTN | feD.

The leading term and the multidegree of a polynomial clearly depend on the choice
of the ordering. For example LT (2xy + y3) = 2xy with multidegree (1, 1) if x > y,
but LT (2xy + y*) = y* with multidegree (0, 3) if y > x. In particular, the leading
term of a polynomial need not be the term of largest total degree. Similarly, the ideal
of leading terms LT (I) of an ideal I in general depends on the ordering used. Note
also that the multidegree of a polynomial satisfies d(fg) = df + dg when f and g are
nonzero, and that in this case LT (fg) = LT (f) + LT (g) (cf. Exercise 2).

The ideal LT (1) is by definition generated by monomials. Such ideals are called
monomial ideals and are typically much easier to work with than generic ideals. For
example, a polynomial is contained in a monomial ideal if and only if each of its
monomial terms is a multiple of one of the generators for the ideal (cf. Exercise 10).

It was important in the proof of Hilbert’s Basis Theorem to have all of the leading
terms of the ideal 1. If I = (fi,..., fm), then LT(I) contains the leading terms
LT(f1),..., LT(f,,) of the generators for I by definition. Since LT (I) is an idea], it
contains the ideal generated by these leading terms:

LT, .-, LT(fm)) S LT ).

The first of the following examples shows that the ideal LT (I) of leading terms can
in general be strictly larger than the ideal generated just by the leading terms of some
generators for 1.

Examples

(1) Choose the lexicographic ordering x > y on F[x, y]. The leading terms of the
polynomials f; = x3y —xy?2 + 1 and fo = x2y? — y3 — 1 are LT(f1) = x3y (so
the multidegree of fi is 3(f1) = (3, 1)) and LT () = x2y2 (s0o () = (2,2). If
I = (f1, f2) is the ideal generated by fj and f> then the leading term ideal LT (1)
contains LT (f) = x3y and LT (f2) = x%y?, so (x3y, x2y?) € LT(I). Since

-3 =y 3y —xy? + D) —x(cH -y  — D =x+y

we see that g = x+ yis anelementof I and so the ideal L7 () also contains the leading
term LT (g) = x. This shows that LT () is strictly larger than (LT (f1), LT (f2)),
since every element in (LT (f1), LT (f2)) = (x3y, x2 y2) has total degree at least 4.
We shall see later that in this case LT (I) = (x, y%).
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(2) With respect to the lexicographic ordering y > x, the leading terms of f; and f
in the previous example are LT(f;) = —xy? (which one could write as —y2x to
emphasize the chosen ordering) and LT (f;) = — y3. We shall see later that in this
ordering LT (I) = (x*, y), which is a different ideal than the ideal LT (1) obtained
in the previous example using the ordering x > y, and is again strictly larger than

(LT(f1), LT (£2)).

(3) Choose any orderingon F[x, y]and let f = f(x, y) be any nonzero polynomial. The
leading term of every element of the principal ideal I = (f) is then a multiple of the
leading term of f, so in this case LT (I) = (LT (f)).

In the case of one variable, leading terms are used in the Division Algorithm to
reduce one polynomial g modulo another polynomial f to get a unique remainder r, and
this remainder is O if and only if g is contained in the ideal (). Since F[x1, x2, ..., x,]
is not a Euclidean Domain if n > 2 (since it is not a P1.D.), the situation is more
complicated for polynomials in more than one variable. In the first example above,
neither fi nor f, divides g in F[x, y] (by degree considerations, for example), so
attempting to first divide g by one of f; or f, and then by the other to try to reduce g
modulo the ideal I would produce a (nonzero) “remainder” of g itself. In particular,
this would suggest that g = yf; — xf, is not an element of the ideal I even though
it is. The reason the polynomial g of degree 1 can be a linear combination of the two
polynomials f; and f, of degree 4 is that the leading terms in yf and xf, cancel in the
difference, and this is reflected in the fact that L7 (f;) and LT (f2) are not sufficient
to generate LT (I). A set of generators for an ideal I in F[x, ..., x,] whose leading
terms generate the leading terms of all the elements in / is given a special name.

Definition. A Grobner basis for anideal I in the polynomial ring F[x,...,x,] is a
finite set of generators {g1, ..., g} for I whose leading terms generate the ideal of all
leading terms in 1, i.e.,

I'=(g,....8m) and LT{I)=(LT(g1),...,LT(gm))-

Remark: Note that a Grobner “basis” is in fact a set of generators for I (that depends on
the choice of ordering), i.e., every element in / is a linear combination of the generators,
and not a basis in the sense of vector spaces (where the linear combination would be
unique, cf. Sections 10.3 and 11.1). Although potentially misleading, the terminology
“Grobner basis” has been so widely adopted that it would be hazardous to introduce a
different nomenclature.

One of the most important properties of a Grobner basis (proved in Theorem 23
following) is that every polynomial g can be written uniquely as the sum of an element
in I and a remainder r obtained by a general polynomial division. In particular, we
shall see that g is an element of 7 if and only if this remainder » is 0. While there is
a similar decomposition in general, we shall see that if we do not use a Grobner basis
the uniqueness is lost (and we cannot detect membership in I by checking whether the
remainder is 0) because there are leading terms not accounted for by the leading terms
of the generators.
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We first use the leading terms of polynomials defined by a monomial ordering
on F[xj,...,x,] to extend the one variable Division Algorithm to a noncanonical
polynomial division in several variables. Recall that for polynomials in one variable,
the usual Division Algorithm determines the quotient g(x) and remainder r(x) in the
equation f(x) = q(x)g(x) + r(x) by successively testing whether the leading term of
the dividend f(x) is divisible by the leading term of g(x): if LT (f) = a(x)LT (g),
the monomial term a(x) is added to the quotient and the process is iterated with f(x)
replaced by the dividend f (x) —a(x)g(x), which is of smaller degree since the leading
terms cancel (by the choice of a(x)). The process terminates when the leading term
of the divisor g(x) no longer divides the leading term of the dividend, leaving the
remainder r(x). We can extend this to division by a finite number of polynomials in
several variables simply by allowing successive divisions, resulting in a remainder and
several quotients, as follows.

General Polynomial Division

Fix a monomial ordering on F[xy, ..., x,], and suppose g;. .. .. & 1s a set of nonzero
polynomials in F[xj, ..., x,]. If f is any polynomial in F[xi, ..., x,], start with a
set of quotients g, ..., g, and a remainder r initially all equal to O and successively

test whether the leading term of the dividend f is divisible by the leading terms of the
divisors gi, ..., &, in that order. Then
i. If LT (f)is divisible by LT (g;), say, LT (f) = a; LT (g;), add a; to the quotient g;,
replace f by the dividend f — a;g; (a polynomial with lower order leading term),
and reiterate the entire process.

ii. If the leading term of the dividend f is not divisible by any of the leading terms
LT(g1),....LT(gy),add the leading term of f to the remainder r, replace f by
the dividend f — LT (f) (i.e., remove the leading term of f), and reiterate the
entire process.

The process terminates (cf. Exercise 3) when the dividend is O and results in a set of
quotients g, . . -, g,, and a remainder r with

f=qg+ - -+qgugm+r.

Each g; g; has multidegree less than or equal to the multidegree of f and the remainder
r has the property that no nonzero term in r is divisible by any of the leading terms
LT (g1),...,LT(g,) (since only terms with this property are added to r in (ii)).

Examples

Fix the lexicographic ordering x > y on F[x, y].

(1) Suppose f = x3y3 + 3x2y* and g = xy*. The leading term of f is x3y3, which is
not divisible by (the leading term of) g, so x3y3 is added to the remainder r (so now
r = x3y3) and f is replaced by f — LT (f) = 3x2y* and we start over. Since 3x2y*
is divisible by LT (g) = xy*, with quotient a = 3x, we add 3x to the quotient g (so
g = 3x), and replace 3x2y* by 3x2y* — aLT(g) = 0, at which point the process
terminates. The result is the quotient g = 3x and remainder r = x3y3 and

Xy 4+3x3y = f=gg+r =By + Y.
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Note that if we had terminated at the first step because the leading term of f is
not divisible by the leading term of g (which terminates the Division Algorithm for
polynomials in one variable), then we would have been left with a ‘remainder’ of f
itself, even though ‘more’ of f is divisible by g. This is the reason for step 2 in the
division process (which is not necessary for polynomials in one variable).

(2) Let f = x24x—y2+y, and suppose g1 = xy+1and g2 = x+ y. In the firstiteration,
the leading term x2 of £ is not divisible by the leading term of gj, but is divisible by
the leading term of g7, so the quotient g; is x and the dividend f is replaced by the
dividend f — xgo = —xy + x — y* + y. In the second iteration, the leading term
of —xy + x — y? + y is divisible by LT (g;), with quotient —1, so g; = —1 and the
dividend is replaced by (—xy + x — y* +y) — (—1)g1 = x — y* + y + 1. In the third
iteration, the leading term of x — y? + y + 1 is not divisible by the leading term of g1,
but is divisible by the leading term of g7, with quotient 1, so 1 is added to g2 (which is
now g2 = x + 1) and the dividend becomes (x — y2 +y+1)—(1)(g2) = —y2 +1. The
leading term is now — y2, which is not divisible by either LT (g)) = xyor LT (g2) = x,
so —y? is added to the remainder r (which is now —y2) and the dividend becomes
simply 1. Finally, 1 is not divisible by either LT (g;) or LT (g2), so is added to the
remainder (so 7 is now —y? + 1), and the process terminates. The result is

q =—1, @=x+1, r=—y"+1 and

F=x24x=Y 4+y=(-Dy+ D+ &+ DxE+y +(=y*+1)
=q181 +g282 +r.

(3) Let f = x2 + x — y% + y as in the previous example and interchange the divisors g1
and g: g1 = x + y and g2 = xy + 1. In this case an easy computation gives

qa=x-y+1, q =0, r=0 and
f=+x—y 4+y=(x—-y+DOx+y)=qg1+ @ +r,

showing that the quotients ¢; and the remainder r are in general not unique and depend
on the order of the divisors gi, . ... gn-

The computation in Example 3 shows that the polynomial f = x? +x — y? + y is
an element of the ideal I = (x + y, xy + 1) since the remainder obtained in this case
was O (in fact f is just a multiple of the first generator). In Example 2, however, the
same polynomial resulted in a nonzero remainder —y? + 1 when divided by xy + 1 and
x + y, and it was not at all clear from that computation that f was an element of 1.

The next theorem shows that if we use a Grobner basis for the ideal / then these
difficulties do not arise: we obtain a unique remainder, which in turn can be used to
determine whether a polynomial f is an element of the ideal 1.

Theorem 23. Fix amonomial orderingon R = F[x, ..., x,] andsuppose {1, - - - » §m)}
is a Grobner basis for the nonzero ideal I in R. Then
(1) Every polynomial f € R can be written uniquely in the form

f=fi+r

where f; € I and no nonzero monomial term of the ‘remainder’ r is divisible
by any of the leading terms LT (g1), ..., LT (8n)-
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(2) Both f; and r can be computed by general polynomial division by g1, ..., gn
and are independent of the order in which these polynomials are used in the
division.

(3) The remainder r provides a unique representative for the coset of f in the
quotient ring F[xy, ..., x,]1/I. In particular, f € I if and only if »r = 0.

Proof: Letting f; = Y ;-,qig € I in the general polynomial division of f
by g1, ..., &n immediately gives a decomposition f = f; + r for any generators
81, - - -, 8m- Supposenow that{gy, ..., g} isaGrobnerbasis, and f = fi+r = fj+r'.
Thenr—r' = f/— f; € I, soitsleading term LT (r —r’) isanelement of LT (I), which
is the ideal (LT (g1), ..., LT (gn)) since {g1, - .., &} is a Grobner basis for I. Every
element in this ideal is a sum of multiples of the monomial terms L7'(g;), ..., LT (gn),
so is a sum of terms each of which is divisible by one of the LT (g;). But both r
and r’, hence also r — r’, are sums of monomial terms none of which is divisible by
LT (g1),.-., LT (gn), which is a contradiction unless r — ¥ = 0. Itfollows that r = r’
is unique, hence sois f; = f — r, which proves (1).

We have already seen that f; and r can be computed algorithmically by polynomial
division, and the uniqueness in (1) implies that r is independent of the order in which the

polynomials gi, . .., g are used in the division. Similarly f; = )[", ;& is uniquely
determined (even though the individual quotients g; are not in general unique), which
gives (2).

The first statement in (3) is immediate from the uniqueness in (1). If r = 0, then
f = fi1 € I. Conversely, if f € I, then f = f + O together with the uniqueness of r
implies that r = 0, and the final statement of the theorem follows.

As previously mentioned, the importance of Theorem 23, and one of the principal
uses of Grobner bases, is the uniqueness of the representative r, which allows effective
computation in the quotient ring F[xi, ..., x,]/I.

We next prove that a set of polynomials in an ideal whose leading terms generate
all the leading terms of an ideal is in fact a set of generators for the ideal itself (and so
is a Grobner basis—in some works this is tal-2n as the definition of a Grobner basis),
and this shows in particular that a Grobner basis always exists.

Proposition 24. Fix a monomial ordering on R = F[x, ..., x,] andlet I be anonzero
ideal in R.
@) Ifgy,...,gmareanyelementsof I suchthat LT (I) = (LT(g1),-.., LT(gm)),
then {g1, - . ., gn} is a Grobner basis for 1.

(2) The ideal I has a Grobner basis.

Proof: Suppose g1,...,8m € I with LT(I) = (LT(g1),--., LT(gn)). We need
to see that gy, ..., g, generate the ideal 1. If f € I, use general polynomial division
to write f = ) i~ g:g: + r where no nonzero term in the remainder r is divisible by
any LT (g;). Since f € I, alsor € I, which means LT (r) is in LT (/). But then
LT (r) would be divisible by one of LT(g1), ..., LT(gn), which is a contradiction
unless r = 0. Hence f = Z:"zl gigi and gy, ..., g, generate I, so are a Grobner basis
for I, which proves (1).
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For (2), note that the ideal LT (I) ofleading terms of any ideal / is amonomial ideal
generated by all the leading terms of the polynomials in /. By Exercise 1 a finite number
of those leading terms suffice to generate LT (1), say LT (I) = (LT (hy), ..., LT (ht))
for some hy, ..., h € 1. By (1), the polynomials k, ..., h; are a Grobner basis of 1,
completing the proof.

Proposition 24 proves that Grobner bases always exist. We next prove a criterion
that determines whether a given set of generators of an ideal I is a Grobner basis,
which we then use to provide an algorithm to find a Grobner basis. The basic idea is
very simple: additional elements in LT (I) can arise by taking linear combinations of
generators that cancel leading terms, as we saw in taking yf; — xf; inthe first example
in this section. We shall see that obtaining new leading terms from generators in this
simple manner is the only obstruction to a set of generators being a Grobner basis.

In general, if fi, f> are two polynomials in F[x, ..., x,] and M is the monic least
common multiple of the monomial terms L7 (f;) and LT (f>) then we can cancel the
leading terms by taking the difference

M _ M
LT(f) LT(f2)

The next lemma shows that these elementary linear combinations account for all can-
cellation in leading terms of polynomials of the same multidegree.

S(f, ) =

h f- 9.1

Lemma 25. Suppose fi,..., fm € Fl[xy,...,x,] are polynomials with the same
multidegree o and that the linear combination & = ay fi + - - - + an, f,» With constants
a; € F has strictly smaller multidegree. Then

h = Zb,-S(f,-_l, fi), for some constants b; € F.
i=2

Proof: Write f; = c¢; f/ wherec; € F and f; is amonic polynomial of multidegree
o. We have

h=) aicif] =aci(fi — f) + @a +ae)(f = f) +- -
+(@ic1 + - + @11 (fry = f) + (@1 + -+ + ) -

Note that f;_, — f/ = S(fi-1, fi)- Then since h and each f;_, — f; has multidegree
strictly smaller than «, we have a;c) + - - - + a,,c,, = O, so the last term on the right
hand side is O and the lemma follows.

The next proposition shows titat a set of generators g, . . ., gm 1s a Grobner basis if
there are no new leading terms among the differences S(g;, g;) not already accounted
for by the g;. This result provides the principal ingredient in an algorithm to construct
a Grobner basis.

For a fixed monomial ordering on R = F[x, ..., x,] and ordered set of polyno-
mials G = {g1,...,8m} in R, write f = r mod G if r is the remainder obtained by
general polynomial division of f € R by gy, ..., g (in that order).
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Proposition 26. (Buchberger’s Criterion) Let R = F|[x, ..., x,] and fix a monomial
orderingon R. If I = (g1, - .., g») is a nonzero ideal in R, then G = {g1, ..., gn} is
a Grobner basis for I if and only if S(g;, g;) =0mod G for1 <i < j <m.

Proof: If {g1, ..., gm} is a Grobner basis for I, then S(g;, g) = Omod G by
Theorem 23 since each S(g;, g;) is anelement of I.

Suppose now that S(g;, g;) = O0mod G for 1 <i < j < m and take any element
f € 1. Tosee that G is a Grobner basis we need to see that (LT (g1), ..., LT(gn))
contains LT (f). Since f € I, we can write f = Z:’;l h;g; for some polynomials
hy, ..., h,. Such a representation is not unique. Among all such representations
choose one for which the largest multidegree of any summand (i.e., max;—y,...,, d(h;g;))
is minimal, say c. It is clear that the multidegree of f is no worse than the largest
multidegree of all the summands h;g;, so 3(f) < a. Write

f=zhigi= Z hig: + Z higi
i=1 d(h;gi)=c a(h;gi)<c
= Y LThdg+ Y, (i—LTh)g+ Y higi.  (92)

d(higi)=c d(h;gi)=c d(higi)<a

Suppose that 3( f) < «. Then since the multidegree of the second two sums is also
strictly smaller than « it follows that the multidegree of the first sum is strictly smaller
than «. If a; € F denotes the constant coefficient of the monomial term LT (h;) then
LT (h;) = a;h} where kK, is a monomial. We can apply Lemma 25 to )_a;(h}g;) to
write the first sum above as ) b; S(h,_, g1, h}g;) with d(h_,g_1) = d(hig) = a.
Let B;,_;,; be the multidegree of the monic least common multiple of L7 (g;—;) and
LT(g;). Then an easy computation shows that S(h;_,gi_1, h;g;) is just S(g;_1, &)
multiplied by the monomial of multidegree o — ;1 ;. The polynomial S(g;_1, g;) has
multidegree less than 8;_;,; and, by assumption, S(g;_1, g;) = 0 mod G. This means
that after general polynomial division of S(g;_1, ;) by €1, - - -, 8m,€ach S(gi_1, &) can
be writtenasasum ) _ g;g; withd(g;g;) < Bi—1,i. Itfollowsthateach S(h;_,gi_1, h}g;)
is a sum qu’ g; with 3(¢g;g;) < . But then all the sums on the right hand side of
equation (2) can be written as a sum of terms of the form p;g; with polynomials p;
satisfying d(p;g;) < «. This contradicts the minimality of & and shows that in fact
d(f) = a, i.e., the leading term of f has multidegree c.

If we now take the terms in equation (2) of multidegree o we see that

LT(f)= ) LT(H)LT(g).
d(higi)=c
so indeed LT (f) € (LT(g1),-.., LT(gn)). It follows that G = {g;,.-.,8gn} is a
Grobner basis.
Buchberger’s Algorithm

Buchberger’s Criterion can be used to provide an algorithm to find a Grobner basis
for an ideal I, as follows. If I = (g1, ..., gm) and each S(g;, g;) leaves a remainder
of 0 when divided by G = {g), ..., &=} using general polynomial division then G
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is a Grobner basis. Otherwise S(g;, gj) has a nonzero remainder r. Increase G by
appending the polynomial g,,+1 = r: G’ = {g1, ---, &n, 8m+1} and begin again (note
that this is again a set of generators for I since g,,41 € I). It is not hard to check
that this procedure terminates after a finite number of steps in a generating set G that
satisfies Buchberger’s Criterion, hence is a Grobner basis for I (cf. Exercise 16). Note
that once an S(g;, g;) yields a remainder of O after division by the polynomials in G it
also yields a remainder of 0 when additional polynomials are appended to G.

If{g1, ..., gm}is a Grobner basis for the ideal 7 and LT (g;) is divisible by LT (g;)
for some j # i, then LT (g;) is not needed as a generatorfor LT (I). By Proposition 24
we may therefore delete g; and still retain a Grobner basis for 1. We may also assume
without loss that the leading term of each g; is monic. A Grébner basis {g1, .. ., gn)
for I where each LT (g;) is monic and where LT (g;) is not divisible by LT (g;) for
[ # j is called a minimal Griobner basis. Whil© a minimal Grobner basis is not unique,
the number of elements and their leading terms are unique (cf. Exercise 15).

Examples

(1) Choose the lexicographic ordering x > y on F[x, y] and consider the ideal I generated
by fi =x3y —xy? +1and f» = x2y2 — y3 — 1 as in Example 1 at the beginning of
this section. To test whether G = { f1, f2} is a Grobner basis we compute S(f1, f2) =
yfi —xf» = x+y, which s its own remainder when divided by { f1, f2}, so Gisnota
Gribner basis for I. Set f3 = x+y, andincrease the generating set: G’ = {f1, f2, f3}-
Now S(f1, f2) = 0 mod G’, and a brief computation yields

S(f, )= fi—x2yfa=—x*y* —xy> + 1 =0mod G’
S B =f—-xfi=-x-y—1=y"—y* — 1 mod G

Let f4 = y* — y3 — 1 and increase the generating setto G = {f1, f2, f3, f4}. The
previous O remainder is still 0, and now S(f2, f3) = 0 mod G” by the choice of f3.
Some additional computation yields

S(fi, fa) = S(f2, fa) = S(f3, f4) =0 mod G”

and so {x3y — xy2 + 1,x2y2 — y3 — 1,x + y, y* — y? — 1} is a Grobner basis for
I. In particular, LT (I) is generated by the leading terms of these four polynomials,
so LT(I) = (x3y, x2y?, x, y*) = (x, y*), as previously mentioned. Then x + y
and y* — y3 — 1 in I have leading terms generating LT (), so by Proposition 24,
{x +y, y* — y3 — 1} gives a minimal Grobner basis for I':

I=(x+y.y' =y -1).

This description of I is much simpler than I = (x3y — xy? + 1, x2y? — y3 — 1).

(2) Choose the lexicographic ordering y > x on F[x, y] and consider the ideal I in the
previous example. In this case, S(f1, f2) produces a remainder of f3 = —x — y; then
S(f1, f3) produces a remainder of f3 = —x* — x3 + 1, and then all remainders are 0
with respect to the Grobner basis {x3y —xy2 +1,x2y2 —y3 —1, —x —y, —x* —x3 +
1}. Here LT (I) = (—xyz, —y3, -y, —x% = (. x%), as previously mentioned, and
{x+y, x* + x3 — 1} gives a minimal Grobner basis for I with respect to this ordering:

I=(x+y,x4+x3—l),

a different simpler description of 1.
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In Example 1 above it is easy to check that {x +y*—y3+y—1, y* —y3— 1} is again
a minimal Grébner basis for I (this is just { f3 + f3, f3}), so even with a fixed monomial
ordering on F[x, ..., x,] aminimal Grobner basis for an ideal / is not unique. We can
obtain an important uniqueness property by strengthening the condition on divisibility
by the leading terms of the basis.

Definition. Fix a monomial ordering on R = F[x,...,x,]. A Grobner basis
{g1>--.,&m) for the nonzero ideal I in R is called a reduced Griobner basis if

(a) each g; has monic leading term, i.e., LT (g;) ismonic,i =1, ..., m, and

(b) noterm in g; is divisible by LT (g;) for j #1i.

Note that a reduced Grobner basis is, in particular, a minimal Grébner basis. If
G ={g1, . - -, &m}is aminimal Grobner basis for I, thenthe leading term LT (g;) is not
divisible by LT (g;) for any i # j. As aresult, if we use polynomial division to divide
g; by the other polynomials in G we obtain a remainder gj’. in the ideal I with the same
leading term as g; (the remainder gj’. does not depend on the order of the polynomials
used in the division by (2) of Theorem 23). By Proposition 24, replacing g; by g; in G
again gives a minimal Grobner basis for 7, and in this basis no term of g; is divisible
by LT (g;) forany i # j. Replacing each element in G by its remainder after division
by the other elements in G therefore results in a reduced Grobner basis for 1. The
importance of reduced Grobner bases is that they are unique (for a given monomial
ordering), as the next result shows.

Theorem 27. Fix a monomial ordering on R = F[x, ..., x,]. Then there is a unique
reduced Gribner basis for every nonzero ideal 7 in R.

Proof: By Exercise 15, two reduced bases have the same number of elements and

the same leading terms since reduced bases are also minimal bases. If G = {g1, - - ., gn}
and G’ = {g1, - .., g,,} are two reduced bases for the same nonzero ideal /, then after a
possible rearrangement we may assume LT (g;) = LT(g]) = h; fori =1, ..., m. For

any fixed i, consider the polynomial f; = g; — g/. If f; is nonzero, thensince f; € I, its
leading term must be divisible by some 4. By definition of areduced basis, h; for j # i
does not divide any of the terms in either g; or g}, hence does not divide LT (f;). But h;
also does not divide LT (f;) since all the terms in f; have strictly smaller multidegree.
This forces f; =0, i.e., g = g; foreveryi,soG = G'.

One application of the uniqueness of the reduced Grobner basis is a computational
method to determine when two ideals in a polynomial ring are equal.

Corollary 28. Let I and J be two ideals in F[x, ..., x,]. Then I = J if and only
if I and J have the same reduced Grobner basis with respect to any fixed monomial
ordering on F(x, ..., x,].

Examples

(1) Consider theideal I = (1, h2, h3) withhy = x24+xy3 434, by = xy®—xy3 43> —y?,
and k3 = xy® — xy? in F[x, y]. Using the lexicographic ordering x > y we find
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S(h1, hp) = S(h1, h3) = 0 mod {hy, h, h3}and S(hz, h3) = y3—y? mod {hy, h2, h3).
Setting hg = y° — y? we find S(h;, hj) = 0mod {hy, ha, h3, ha} for1 <i < j <4,
SO

x4y -4yt -y S ox? Y —y?

is a Grobner basis for I. The leading terms of this basis are x2, xy%, xy’, y°. Since y°
divides both xy® and xy>, we may remove the second and third generators to obtain a
minimal Grébner basis {x2 + xy> + y*, y° — y?2} for I. The second term in the first
generator is divisible by the leading term y> of the second generator, so this is not a
reduced Grobner basis. Replacing x2 + xy> + y* by its remainder x2 + xy2 + y* after
division by the other polynomials in the basis (which in this case is only the polynomial
y3 — y2), we are left with the reduced Grobner basis {x2 + xy2 + y*, y° — y2} for I.
(2) Consider theideal J = (hy, h2, h3) withhy =xy> +y3 + 1, hg = x3y —x3 4+ 1, and
hs = x + y in F[x, y]. Using the lexicographic monomial ordering x > y we find
S(h1, h2) = 0mod {h1, ha, h3}and S(h1, h3) = y*—y3 —1 mod {hy, ha, h3). Setting
hg = y* — y3 — 1 we find S(h;, hj) = 0mod {hy, h, h3, hs) forl <i < j <4,s0
xy3+y3+l, Sy—x3+1, x+y, y4—y3~1
is a Grobner basis for J. The leading terms of this basis are xy3, x3y, x, and y4, so
{x + y, y* — y3 — 1} is a minimal Grébner basis for J. In this case none of the terms
in y* — y3 — 1 are divisible by the leading term of x + y and none of the terms in
x + y are divisible by the leading term in y* — y =1L so{x+y y*—y*—1}isthe
reduced Grobner basis for J. This is the basis for the ideal / in Example 1 following
Proposition 26, so these two ideals are equal:

By =224+ 1,x52 -y - D=y  +y’ + 1,33y -3+ 1L,x +y)
(and both are equal to the ideal (x + y, y* — y3 — 1)).

Grobner Bases and Solving Algebraic Equations: Elimination

The theory of Grobner bases is very useful in explicitly solving systems of algebraic
equations, and is the basis by which computer algebra programs attempt to solve systems
of equations. Suppose S = {fi, ..., f} is a collection of polynomials in n variables
X1, ..., X, and we are trying to find the solutions of the system of equations f; = 0,
f2 =0, ..., fu = 0 (i.e., the common set of zeros of the polynomials in S). If
(a1, . .., a,) isany solution to this system, then every element f of the ideal I generated
by S also satisfies f(a, ..., a,) = 0. Furthermore, it is an easy exercise to see that if
S’ = {g1,--., &5} is any set of generators for the ideal I then the set of solutions to the
system g =0, ..., g, = 0 is the same as the original solution set.

In the situation where fi, ..., f are linear polynomials, a solution to the system
of equations can be obtained by successively eliminating the variables x1, x2, ... by
elementary means—using linear combinations of the original equations to eliminate
the variable x;, then using these equations to eliminate x5, etc., producing a system of
equations that can be easily solved (this is “Gauss-Jordan elimination” in linear algebra,
cf. the exercises in Section 11.2).

The situation for polynomial equations that are nonlinear is naturally more com-
plicated, but the basic principle is the same. If there is a nonzero polynomial in the
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ideal I involving only one of the variables, say p(x,), then the last coordinate a, is
a solution of p(x,) = 0. If now there is a polynomial in / involving only x,_; and
Xn, say q(xn—1, Xn), then the coordinate a,,_; would be a solution of g(x,_1,a,) = 0,
etc. If we can successively find polynomials in / that eliminate the variables xi, x7, . ..
then we will be able to determine all the solutions (a;, . ... a,) to our original system
of equations explicitly.

Finding equations that follow from the system of equations in S, i.e., finding ele-
ments of the ideal I that do not involve some of the variables, is referred to as elimi-
nation theory. The polynomials in I that do not involve the variables x;, ..., x;, i.e.,
INF[xiyy,...,x,],is easily seentobe anideal in F[x;1, ..., X,] and is given a name.

Definition. If [ is an ideal in F[x;,...,x,] then I; = I N F[x;4;, ..., x,] is called
the i® elimination ideal of 1 with respect to the ordering x; > --- > x,.

The success of using elimination to solve a system of equations depends on being
able to determine the elimination ideals (and, ultimately, on whether these elimination
ideals are nonzero).

The following fundamental proposition shows that if the lexicographic monomial
ordering x; > -+ > x, is used to compute a Grobner basis for I then the elements
in the resulting basis not involving the variables xy, ..., x; not only determine the i
elimination ideal, but in fact give a Grobner basis for the i elimination ideal of /.

Proposition 29. (Elimination) Suppose G = {g, ..., g} is a Grobner basis for the
nonzero ideal [ in F[xi, ..., x,] with respect to the lexicographic monomial ordering
x3 > -+ > x,. Then G N F[x;44, ..., x,] is a Grobner basis of the i'" elimination
ideal I; = I N F[xi41, ..., x,] of 1. In particular, I N F[x;41, ..., x,] = 0if and only
fGN Flxiyy,...,x,] =10.

Proof: Denote G; = G N F[xit1,...,x,]. Then G; € I;, so by Proposition
24, to see that G; is a Grobner basis of I; it suffices to see that LT (G;), the leading
terms of the elements in G;, generate LT (I;) as an ideal in F[x;4q, ..., x,]. Certainly
(LT(G;)) € LT(;) as ideals in F[xi41, ..., x,]- To show the reverse containment,
let f be any element in ;. Then f € I and since G is a Grébner basis for I we have

LT(f)=ai(x1,...,x,)LT(g1) +--- +am(x1, ..., x,) LT (gm)

for some polynomials ay, ..., a,, € F[xi, ..., x,]. Writing each polynomial g; as a
sum of monomial terms we see that LT (f) is a sum of monomial terms of the form
axj' ... x> LT(g;). Since LT (f) involves only the variables x;, ..., x,, the sum of
all such terms containing any of the variables xy, ..., x; must be 0, so LT ( f) is also the
sum of those monomial terms only involving x; 1, .. ., x,,. It follows that LT (f) can be
writtenasa F[x; 1, ..., x,]-linear combination of some monomial terms L7 (g,) where
LT(g,) does not involve the variables xi, ..., x;. But by the choice of the ordering,
if LT (g,) does not involve x, ..., x;, then neither do any of the other terms in g,
i.e., g € G;. Hence LT (f) can be written as a F[x;,1, ..., x,]-linear combination of
elements LT (G;), completing the proof.

Note also that Gribner bases can be used to eliminate any variables simply by using
an appropriate monomial ordering.
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Examples

@
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3

Sec. 9.6

The ellipse 2x2 + 2xy + y2 — 2x — 2y = 0 intersects the circle x2 + y2 = 1 in two
points. To find them we compute a Grobner basis for the ideal 7 = (2x2 4 2xy + y? —
2x — 2y, x%2 + y2 — 1) C R[x, y] using the lexicographic monomial order x > y to
eliminate x, obtaining g; = 2x+y2+5y3 —2 and go = Sy* —4y3. Hence 5y* = 4y>
and y = O or y = 4/5. Substituting these values into g; = 0 and solving for x we find
the two intersection points are (1, 0) and (—3/5, 4/5).

Instead using the lexicographic monomial order y > x to eliminate y results in
the Grobner basis {y? + x% — 1, 2yx — 2y + x2 — 2x + 1, 5x3 — 7x2 — x + 3}. Then
5x3 —7x2 — x +3 = (x — 1)2(5x + 3) shows that x is 1 or —3/5 and we obtain the
same solutions as before, although with more effort.

In the previous example the solutions could also have been found by elementary means.
Consider now the solutions in C to the system of two equations

Jc3—2xy+y3 =0 and x5—2x2y2+y5=0,
Computing a Grobner basis for the ideal generated by fi = x3 — 2xy + y? and

f2 = x> — 2x2y2 + y3 with respect to the lexicographic monomial order x > y we
obtain the basis

g =x3—2xy+y3

g2 = 200xy? + 193y° + 158y8 — 45y7 — 456y% + 50y° — 100y*

g3 =y10—»% —2y" +2)5.
Any solution to our original equations would satisfy g = g2 = g3 = 0. Since
g3 = Y& — 1)2(y2 +2y+2),wehavey =0,y = lory = —1%i. Since
g1(x,0) = x3 and g2(x 0) = 0, we see that (0, 0) is the only solution with y = 0.

Sincegi(x, 1) = x 3 _2x+1and g2(x,1) =200(x—1) haveonlyx = 1 asa common
zero, the only solution with y = 1 is (1 1). Finally,

gi(x,—1x1i) =x3 +QF2)x+2E20)
g2(x, —1xi) = —400i(x + 1 i),

and a quick check shows the common zero x = —1 i when y = —1+i, respectively.
Hence, there are precisely four solutions to the original pair of equations, namely

x,y)=0,0, 1,1, (-1+i-1-9), or (=1—i,—1+i).
Consider the solutions in C to the system of equations
x+y+z=1
242 +2=2
B+y+3=3.
The reduced Grobner basis with respect to the lexicographic ordering x > y > z is
x+y+z-1, Y +yz—y+22—z2-(1/2), 22 -2 - (1/2z— (1/6))

and so z is aroot of the polynomial £ — 2 — (1/2)t — (1/6) (by symmetry, also x and y
areroots of this same polynomial). For each of the three roots of this polynomial, there
are two values of y and one corresponding value of x making the first two polynomials
in the Grobner basis equal to 0. The resulting six solutions are quickly checked to be
the three distinct roots of the polynomial £ — 2 — (1 /2)t — (1 /6) (which is irreducible
over Q) in some order.
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As the previous examples show, the study of solutions to systems of polynomial
equations fj = 0, f, =0, ..., f,, = 0 is intimately related to the study of the ideal
I = (f1, f2, ..., fm) the polynomials generate in F[xy,...,x,]. This fundamental
connection is the starting point for the important and active branch of mathematics
called “algebraic geometry”, introduced in Chapter 15, where additional applications
of Grobner bases are given.

We close this section by showing how to compute the basic set-theoretic op-
erations of sums, products and intersections of ideals in polynomial rings. Sup-
pose I = (fi,.... fs) and J = (hy, ..., hy) are two ideals in F[xy,...,x,]. Then
I+J=(fr,..., fs, h1,-..,h)and 1 = (fihy, ..., fih;j, ..., fsh;). The following
proposition shows how to compute the intersection of any two ideals.

Proposition 30. If I and J are any two ideals in F[x;,...,x,] thentI + (1 —1)J
is an ideal in F[t,x1,...,x;Jand INJ = (I + (1 —t)J) N Fxy,...,x,]. In
particular, 7 N J is the first elimination ideal of t1 + (1 — f)J with respect to the
ordering t > x; > +-- > X,,.

Proof: First, tI and (1 —1t)J are clearly idealsin F[x,, ..., x,, t], so also their sum
tI+(1—t)Jisanidealin F[x;, ..., x,,t]. If f € INJ,then f = tf +(1—1) f shows
INJc(@I+(1—-1t)J)yNnFIxy,...,x,].- Conversely, suppose f =tfi+ (1 —1t)fris
an element of F[x;,...,x,],where fy e Iand f, € J. Thent(fi — fo)=f— f» €
Flxi,...,x,] shows that fi — f, = 0and f = fo,s0 f = fi= f e INJ.
SinceINJ=0I+{1—-1t)J)N F[xy,...,x,], I NJ is the first elimination ideal of
tI + (1 — t)J with respect to the ordering t > x; > --- > x,,.

WehavetI+(1—1)J = (tf1,...,tfs, 0=Dhy, ..., A=0Dh)ifI = (fi,..., fs)
andJ = (hy, ..., ht). By Proposition 29, the elements not involving ¢ in a Grobner basis
for this ideal in F[t, x1, ..., x,], computed for the lexicographic monomial ordering
t > x; > --- > Xy, give a Grébner basis for the ideal I N J in F[xq, ..., x,].

Example

Let I = (x,y)2 = (x2,xy, y?) and let J = (x). For the lexicographic monomial ordering
t > x > y the reduced Grobner basis for 7 + (1 —¢) J in F[t, x, yl is {tx — x, ty%, x2, xy}
andsoINJ = (x2, xy).

EXERCISES

1. Suppose [ is an ideal in F[xi, ..., x,] generated by a (possibly infinite) set S of poly-
nomials. Prove that a finite subset of the polynomials in S suffice to generate I. [Use
Theorem 21 to write I = (fi,..., fm) and then write each f; € I using polynomials in

S

2. Let > be any monomial ordering.
(a) Prove that LT(fg) = LT(f)LT(g) and 3(fg) = 3(f) + a(g) for any nonzero
polynomials f and g.
(b) Prove that 3(f + g) < max(3(f), 8(g)) with equality if 3(f) # 3(g).
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(¢) Prove that m > 1 for every monomial m.
(d) Prove that if m; divides m, then m, > mj. Deduce that the leading term of a
polynomial does not divide any of its lower order terms.

3. Prove that if > is any total or partial ordering on a nonempty set then the following are
equivalent:
(i) Every nonempty subset contains a minimum element.
(ii) There is no infinite strictly decreasing sequence a1 > a» > a3 > - - - (this is called
the descending chain condition or D.C.C.).
Deduce that General Polynomial Division always terminates in finitely many steps.

4. Let > be a monomial ordering, and for monomials my, my define m; >, my if either
"~ degmy > degmgy, or degm; = degmy and my > ms.

(a) Prove that >, is also a monomial ordering. (The relation > is called the grading
of >. An ordering in which the most important criterion for comparlson is degree is
sometimes called a graded or a degree ordering, so this exercise gives a method for
constructing graded orderings.)

(b) The grading of the lexicographic ordering xj > -- - > x; is called the grlex monomial

ordering. Show that xg > x%xz > x x% > x% > x1 with respect to the grlex ordering

and x12x2 > x1 x% > x1 > xg > x% with respect to the lexicographic ordering.

5. The grevlex monomial ordering is defined by first choosing an ordering of the variables
{x1, x2, ..., xy}, then defining m; > my for monomials m1, m if eitherdegm, > degmy
or degm; = degm; and the first exponent of x,, x,—1, - .., x1 (in that order) where m,
and m differ is smaller in my.

(a) Prove that grevlex is a monomial ordering that satisfies x; > x2 > --- > xp,.

(b) Prove that the grevlex ordering on F[xi, x2] with respect to {x;, x2} is the graded
lexicographic ordering with x; > x7, but that the grevlex ordering on F[x), x2, x3] is
not the gradmg of any lexicographic ordering.

(c) Show that x1x2x3 > x%x% > xzzxg > xzxg > x1x2 > x% > x1x3 > x% > x1 > xp for
the grevlex monomial ordering with respect to {xj, x2, x3}.

6. Show that x3y > x3z2 > x3z > x2y27 > x?2y > xz2 > y?z? > y%z with respect to
the lexicographic monomial ordering x > y>z Show that for the corresponding grlex
monomial ordering x3z2 > x2y2z > x3y > iz > y 22 > x%y > xz2 > y?z, and that
x2y%z > 322 > 13y > 23z > y2z2 > x2y > y%z > xz? for the grevlex monomial
ordering with respect to {x, y, z}

7. Order the monomials x2z, x2y2z, xy?z, x3y, x3z2, x2, x%yz?, x*z? for the lexicographic

monomial ordering x > y > z, for the correspondmg grlex monomial order, and for the
grevlex monomial ordering with respect to {x, y, z}.

8. Show there are n! distinct lexicographic monomial orderings on F[xy, ..., x,]. Show
similarly that there are n! distinct grlex and grevlex monomial orderings.

9. It can be shown thatany monomial ordering on F[xy, . .., x,;] may be obtained as follows.
Fork < nletvy, vy, ..., v be nonzero vectors in Euclidean n-space, R”, that are pairwise
orthogonal: v; - v; = O foralli # j, where - is the usual dot product, and suppose also that
all the coordinates of v; are nonnegative. Define an order, >, on monomials by m; > m»
if and only if for some # < k we have v; - 3(m1) = v; - d(m2) foralli € {1,2,...,1 — 1}
and v - d(m1) > vy - d(m3).

(@) Letk=nandletv; = (0,...,0,1,0,...,0) with 1 inthe i®* position. Show that >
defines the lexicographic order with xy > x > - -+ > xp.
(b) Letk =nanddefinevy =(1,1,...,1)andy; =(1,1,...,1,-n+i—-1,0,...,0),
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10.

11.

12.

13.

14.

15.

16.

17.

18.

where there are i — 2 trailing zeros, 2 < i < n. Show that > defines the grlex order
with respect to {x1, ..., xn}.

Suppose I is a monomial ideal generated by monomials mj, ..., mg. Prove that the
polynomial f € F[x1,....x,] is in I if and only if every monomial term f; of f is
a multiple of one of the m;. [For polynomials ay, ...,ax € F[xy,..., xn] expand the
polynomial aymj + - - - + axmy and note that every monomial term is a multiple of at least
one of them;.] Show that x2yz+3xy? isan element of theideal I = (xyz, y?) C F[x, y, z]
but is notan element of the ideal I’ = (xz2, y2).

Fix a monomial ordering on R = F[xi, ..., x,] and suppose {g1, ..., &n} is a Grobner
basis for the ideal / in R. Prove that h € LT ([) if and only if & is a sum of monomial
terms each divisible by some LT (g;), 1 <i < m. [Use the previous exercise.]

Suppose I is a monomial ideal with monomial generators gj, ..., gx. Use the previous
exercise to prove directly that {g1, ..., &} is a Grobner basis for 1.

Suppose 1 is a monomial ideal with monomial generators g1, .. ., gn. Use Buéhberger’s
Criterion to prove that {g1, ..., =} is a Grébner basis for I.

Suppose I is a monomial ideal in R = F[xy,..., x,] and suppose {m1,...,m} is a
minimal set of monomials generating /, i.e., each m; is a monomial and no proper subset
of {m, ..., m} generates I. Prove that the m;, 1 <i < k are unique. [Use Exercise 10.]

Fix a monomial ordering on R = F[xy, ..., x,].

(a) Prove that {gy, .- -, &} is a minimal Grobner basis for the ideal / in R if and only if
{LT(g1),-..,LT(gn)}is a minimal generating set for LT (I).

(b) Prove that the leading terms of a minimal Grobner basis for I are uniquely determined
and the number of elements in any two minimal Grobner bases for / is the same. [Use
(a) and the previous exercise.]

Fix a monomial ordering on F[xi, ..., x,] and suppose G = {g1,..., gm} is a set of

generators for the nonzero ideal 1. Show that if S(g;, gi) # Omod G then the ideal

(LT(g1), ..., LT(gm), LT (S(gi, gj)) isstrictlylarger than the ideal (LT (g1), ..., LT (gm)).

Conclude that the algorithm for computing a Grobner basis described following Proposition

26 terminates after a finite number of steps. [Use Exercise 1.]

Fix the lexicographic ordering x > y on F[x, y]. Use Buchberger’s Criterion to show that
{x2y — y2, x3 — xy} is a Grobner basis for the ideal 1 = (x2y — yZ, x3 — xy).

Show {x — y3, y® — ¥} is the reduced Grobner basis for the ideal I = (x — y3, —x% + xy?)
with respect to the lexicographic ordering defined by x > y in F[x, y].

19. Fix the lexicographic ordering x > y on F[x, y].

20.

21.

22.

(a) Show that {x3 —y, x2y — y2, xy2 — y2, y3 — y2} is the reduced Grobner basis for the
ideal I = (—x3 +y, x2y — y?).

(b) Determine whether the polynomial f = x6

— x%y is an element of the ideal 1.

Fix the lexicographic ordering x > y > z on F[x, y, z]. Show that {x? + xy + z, xyz +
22, xz2, 23} is the reduced Grbner basis for the ideal 1 = (x2 + xy+ 2z, xyz + z%) andin

particular conclude that the leading term ideal LT (I) requires four generators.

Fix the lexicographic ordering x > y on F[x, y]. Use Buchberger’s Criterion to show that

{x%y — y2, x3 — xy} is a Grobner basis for the ideal I = (x2y — y2, x3 — xy).

Let I = (x2 — y, x%y — z) in F[x, y, z].

(a) Show that {x2 — y, y2 — 2} is the reduced Grobner basis for I with respect to the
lexicographic ordering defined by x > y > z.

(b) Show that {x2 — y, z — y?} is the reduced Grébner basis for I with respect to the

332 Chap.9 Polynomial Rings



lexicographic ordering defined by z > x > y (note these are essentially the same
polynomials as in (a)).
(c) Show that {y — x2,z — x4} is the reduced Grobner basis for I with respect to the
lexicographic ordering defined by z > y > x.
23. Show that theideals I = (x2y + xy? —2y,x2+xy —x+y* -2y, xy* —x —y +y3) and
J = (x —y%,xy — y, xX2 — y) in F[x, y] are equal.
24. Use reduced Grobner bases to show that the ideal I = (x3 — yz, yz + y) and the ideal
J = (x3z +x3, 3+ y) in F[x, y, z] are equal.
25. Show that the reduced Grobner basis using the lexicographic ordering x > y for the ideal
=2 +x2 2 -y y —yD)is 62 —y2 » =yt xy? +y%).
26. Show that the reduced Grobner basis for the ideal I = (xy + y2, x2y + xy? + x?) is
{x2, xy + 2, y3} with respect to the lexicographic ordering x > y and is {y? + yx, x2}
with respect to the lexicographic ordering y > x.

There are generally substantial differences in computational complexity when using different
monomial orders. The grevlex monomial ordering often provides the most efficient computation
and produces simpler polynomials.

27. Showthat {x3—y3, x24+xy?+y*, x2y+xy3+y?}is areduced Grobner basis for theideal I
in the example following Corollary 28 with respect to the grlex monomial ordering. (Note
that while this gives three generators for I rather than two for the lexicographic ordering
as in the example, the degrees are smaller.)

28. Let I = (x* —y* + 23 — 1,x3 + y2 4+ z2 — 1). Show that there are five elements in a
reduced Grobner basis for I with respect to the lexicographic ordering withx > y > z(the
maximum degree among the five generators is 12 and the maximum number of monomial
terms among the five generators is 35), that there are two elements for the lexicographic
ordering y > z > x (maximum degree is 6 and maximum number of terms is 8), and that
03 +y2+ 22 — 1, x% + x2%2 — x + y* — 22 + 1} is the reduced Grobner basis for the
grevlex monomial ordering.

29

30. Finda Grobner basis fortheideal I = (x? +xy +y? —1, x2 +4y2 —4) for the lexicographic
ordering x > y anduse it to find the four points of intersection of the ellipse x>+ xy+y? = 1
with the ellipse x2 + 4y = 4in R2,

31. Use Grobner bases tofind all six solutions to thesystem of equations 2x3+2x2y2+3y3 = 0
and 3x° 4+ 2x3y3 + 2y° = 0 over C.

32. Use Grobner bases to show that (x, z) N (y2, x — yz) = (xy,x — yz) in Flx, y, z].

Solve the system of equations x2 — yz = 3, y> — xz = 4, z2 — xy = 5over C.

D

33. Use Grobner bases tocompute the intersection of the ideals (x3y —xy? +1, x2y2 —y3—1)
and (x2 — y2, x3 + y3) in F[x, y).
The following four exercises deal with the ideal quotient of two ideals I and J ina ring R.
Definition. The ideal quotient (I : J) of two ideals I, J in aring R is the ideal
(I:J)={reR|rdel).

34. (a) Suppose R is an integral domain, 0 # f € R and I is an ideal in R. Show that if
{g1,-- -, &s} are generators for the ideal I N (f), then {g;/f, ..., gs/f) are generators
for the ideal quotient (1 : (f)).
(b) If I is an ideal in the commutative ring R and fj,..., fs € R, show that the ideal
quotient (I : (f1, ... fs)) is the ideal M;_, (I : (f7)).
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35. 1 = 2y + 2, x+y3 — 2,2y 2 — yz22 — 23) and J = (x2y%, x32%, y32") in Q[x, y, z]
show (I : J) is the ideal (22, y+ z, x — 2). [Use the previous exercise and Proposition 30.]

36. Suppose that K is an ideal in R, that [ is an ideal containing K, and J is any ideal. If T
and 7 denote the images of I and J in the quotient ring R/ K, show that (I : J) = (I : J)
where (I : J) is the image in R/K of the ideal quotient (I : J).

37. Let K be the ideal (y° — z*) in R = QI[y, z]. For each of the following pairs of ideals
I and J, use the previous two exercises together with Proposition 30 to verify the ideal
quotients (7 : J) inthering R/K:

L 1=02y - J=0,0:1 =32
i. 1=0%2y -27=0).0:7)=G%2.
ii. 7=0,%,2y-2,J=1,J:7)=(,2.

Exercises 38 to 44 develop some additional elementary properties of monomial ideals in
F[x1,...,x,]. It follows from Hilbert’s Basis Theorem that ideals are finitely generated,
however one need not assume this in these exercises—the arguments are the same for finitely
or infinitely generated ideals. These exercises may be used to give an independent proof of
Hilbert’s Basis Theorem (Exercise 44). In these exercises, M and N are monomial ideals with
monomial generators {m; | i € I} and {n; | j € J} for some index sets I and J respectively.

38. Prove that the sum and product of two monomial ideals is a monomial ideal by showing
that M + N =(m;, njliel, jeJ),and MN = (m;n; |iel, jeJ).

39. Show thatif {Ms | s € S}is any nonempty collection of monomial ideals that is totally
ordered under inclusion then UsesM; is a monomial ideal. (In particular, the union of any
increasing sequence of monomial ideals is a monomial ideal, cf. Exercise 19, Section 7.3.)

40. Prove that the intersection of two monomial ideals is a monomial ideal by showing that
MNN = (e,jli€l jeJ), where g ; is the least common multiple of m; and n;.
[Use Exercise 10.]

41. Prove that for any monomial 7, the ideal quotient (M : (n)) is (m; /d; | i € I), where d;
is the greatest common divisor of m; and n (cf. Exercise 34). Show that if N is finitely
generated, then the ideal quotient (M : N) of two monomial ideals is a monomial ideal.

42. (a) Show that M is amonomial prime ideal if and only if M = (S) for some subset of S of
{x1,x2, ..., xz}. (In particular, there are only finitely many monomial prime ideals,
and each is finitely generated.)

(b) Show that (x1, ..., x,) is the only monomial maximal ideal.

43. (Dickson’s Lemma—a special case of Hilbert’s Basis Theorem) Prove that every monomial

ideal in F[xy, ..., x,] is finitely generated as follows.

LetS = {N | N is a monomial ideal that is not finitely generated}, and assume by way of

contradiction S # @.

(a) Show thatS contains a maximal element M. [Use Exercise 30 and Zorn’s Lemma.]

(b) Show that there are monomials x, y not in M with xy € M. [Use Exercise 33(a).]

(c) For x as in (b), show that M contains a finitely generated monomial ideal Mp such
that Mo+ (x) = M+ (x) and M = Mo + (x)(M : (x)), where (M : (x)) is the
(monomial) ideal defined in Exercise 32, and (x)(M : (x)) is the product of these
two ideals. Deduce that M is finitely generated, a contradiction which proves S = @.
[Use the maximality of M and previous exercises.]

44. If Iisanonzeroidealin F[x, ..., x,], use Dickson’s Lemmatoprove that LT () is finitely
generated. Conclude that I has a Griobner basis and deduce Hilbert’s Basis Theorem. [cf.
Proposition 24.]
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45. (n-colorings of graphs) A finite graph G of size N is a set of vertices i € {1,2,..., N}
and a collection of edges (i, j) connecting vertex i with vertex j. An n-coloring of G
is an assignment of one of n colors to each vertex in such a way that vertices connected
by an edge have distinct colors. Let F be any field containing at least n elements. If
we introduce a variable x; for each vertex i and represent the n colors by choosing a set
S of n distinct elements from F, then an n-coloring of G is equivalent to assigning a
value x; = o; foreachi = 1,2,..., N where o; € S and o; # «;j if (i, j) is an edge
inG. If f(x) = [lyes(* — @) is the polynomial in F[x] of degree n whose roots are
the elements in S, then x; = ¢; for some ¢; € S is equivalent to the statement that x;
is a solution to the equation f(x;) = 0. The statement o; # «; is then the statement
that f(x;) = f(xj) but x; # x;, so x; and x; satisfy the equation g(x;, x;) = 0, where
g(x;, x;) is the polynomial (f(xi) — f(x;))/(xi — x;j) in F[x;, x;]. It follows that finding
an n-coloring of G is equivalent to solving the system of equations

fxi) =0, fori =1,2,...,N.
g(xi,xj) =0, forall edges (i, j) in G

(note also we may use any polynomial g satisfying a; # «; if g(a;, j) = 0). It follows by
“Hilbert’s Nullstellensatz” (cf. Corollary 33 in Section 15.3) that this system of equations
has a solution, hence G has an n-coloring, unless theideal I in F[x1, x2, ..., xx] generated
by the polynomials f(x;) fori =1, 2, ..., N, together with the polynomials g(x;, x;) for
all the edges (i, j) in the graph G, is not a proper ideal. This in turn is equivalent to the
statement that the reduced Grobner basis for I (with respect to any monomial ordering) is
simply (1}. Further, when an n-coloring does exist, solving this system of equations as in
the examples following Proposition 29 provides an explicit coloring for G.

There are many possible choices of field F and set S. For example, use any field F
containing a set S of distinct n roots of unity, in which case f(x) = x" — 1 and we may
take g(xi,x;) = (x]' — x;’)/(x,- —xj) = x;’_l + x,."_zxj 4+ 4 x,-xjf"2 + x;‘_l, or use
any subset S of F = [F, with a prime p > n (in the special case n = p, then, by Fermat’s
Little Theorem, we have f(x) = x? — x and g(x;, xj) = (x; — xj)”_l - 1.

(a) Consider a possible 3-coloring of the graph G with eight vertices and 14 edges (1, 3),
(1,4, (1,5), (2,4, (2,7), (2,8), (3,4), (3,6), (3,8), (4.5), (5,6), (6,7), (6,8), (7,8).
Take F = [F3 with ‘colors’ 0, 1, 2 € F3 and suppose vertex 1 is colored by 0. In this case
f(x) =x(x - D(x —2) =x3 - x-€ F3[x] and gxi, xj) = x,-2 + xixj +xj2 —1.IfIis
the ideal generated by x;, x,.3 —Xi,2 <i < 8and g(x;, x;) for the edges (i, j) in G, show
that the reduced Grobner basis for I with respect to the lexicographic monomial ordering
X1 > x2 > --- > xg is {x1, x2, x3 + x8, x4 + 2x8, x5 + X8, X6, X7 +x3,x§ + 2}. Deduce
that G has two distinct 3-colorings, determined by the coloring of vertex 8 (which must be
colored by a nonzero element in IF3), and exhibit the colorings of G.

Show that if the edge (3, 7) is added to G then the graph cannot be 3-colored.

(b) Take F = [F5 with four ‘colors’ 1,2,3,4 € Fs, so f(x) = x4 — 1 and we may use
g(xi, xj) = x? + xl.zxj + x,~xj2 + x3. Show that the graph G with five vertices having 9
edges (1, 3), (1,4), (1,5), (2, 3), (2, 4), (2,5), (3,4), (3,5). (4. 5) (the “complete graph
on five vertices” with one edge removed) can be 4-colored but cannot be 3-colored.

(c) Use Grobner bases to show that the graph G with nine vertices and 22 edges (1, 4), (1, 6),
(1,7, (1,8), (2,3), 2,4, (2,6), 2,7, 3,5), 3,7, (3,9), 4,5), 4,6), 4,7), 4,9),
(5,6), (5.7, (5,8), 5.9), (6.7), (6,9), (7, 8) has precisely four 4-colorings up to a
permutation of the colors (so a total of 96 total 4-colorings). Show that if the edge (1, 5)
is added then G cannot be 4-colored.
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Part [l

MODULES AND VECTOR SPACES

In Part III we study the mathematical objects called modules. The use of modules
was pioneered by one of the most prominent mathematicians of the first part of this
century, Emmy Noether, who led the way in demonstrating the power and elegance of
this structure. We shall see that vector spaces are just special types of modules which
arise when the underlying ring is a field. If R is a ring, the definition of an R-module
M is closely analogous to the definition of a group action where R plays the role of
the group and M the role of the set. The additional axioms for a module require that
M itself have more structure (namely that M be an abelian group). Modules are the
“representation objects” forrings, i.e., they are, by definition, algebraic objects on which
rings act. As the theory develops it will become apparent how the structure of the ring
R (in particular, the structure and wealth of its ideals) is reflected by the structure of its
modules and vice versa in the same way that the structure of the collection of normal
subgroups of a group was reflected by its permutation representations.
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CHAPTER 10

Introduction to Module Theory

710.1 BASIC DEFINITIONS AND EXAMPLES

We start with the definition of a module.

Definition. Let R be aring (not necessarily commutative nor with 1). A left R-module
or a left module over R is a set M together with
(1) abinary operation + on M under which M is an abelian group, and
(2) an action of R on M (thatis, amap R x M — M) denoted by rm,forallr € R
and for all m € M which satisfies
@ r+sym=rm+sm, forallr,se RRmeM,
(b) (rsym =r(sm), forallr,s € R,m € M, and
(©rm+n=rm+rn, forallr e R,m,ne M.
If the ring R has a 1 we impose the additional axiom:
d Im=m, forallme M.

The descriptor “left” in the above definition indicates that the ring elements appear
on the left; “right” R-modules can be defined analogously. If the ring R is commutative
and M is aleft R-module we can make M into aright R-module by defining mr = rm
form € M andr € R. If R is not commutative, axiom 2(b) in general will not hold with
this definition (so not every left R-module is also a right R-module). Unless explicitly
mentioned otherwise the term “module” will always mean “left module.” Modules
satisfying axiom 2(d) are called unital modules and in this book all our modules will be
unital (this is to avoid “pathologies” such as having rm = O forallr € R and m € M).

When R is afield F the axioms for an R-module are precisely the same as those
for a vector space over F, so that

modules over a field F and vector spaces over F are the same.

Before giving other examples of R-modules we record the obvious definition of
submodules.

Definition. Let R be aring and let M be an R-module. An R-submodule of M is a
subgroup N of M which is closed under the action of ring elements, i.e., rn € N, for
allr e R,n € N.

337



Submodules of M are therefore just subsets of M which are themselves modules
under the restricted operations. In particular, if R = F is a field, submodules are the
same as subspaces. Every R-module M has the two submodules M and O (the latter is
called the trivial submodule).

Examples

@™

Let R be any ring. Then M = R is aleft R-module, where the action of aring element
on a module element is just the usual multiplication inthe ring R (similarly, R is aright
module over itself). In particular, every field can be considered as a (1-dimensional)
vector space over itself. When R is considered as a left module over itself in this
fashion, the submodules of R are precisely the left ideals of R (and if R is considered
as a right R-module over itself, its submodules are the right ideals). Thus if R is not
commutative it has a left and right module structure over itself and these structures
may be different (e.g., the submodules may be different) — Exercise 21 at the end of
this section gives a specific example of this.

(2) Let R = F be afield. Asnoted above, every vector space over F is an F-module and

vice versa. Let n € Z* and let
F" ={(a1,a,...,a,) | a; € F, forall i}

(called affine n-space over F). Make F" into a vector space by defining addition and
scalar multiplication componentwise:
(a1,a2,...,an) + (b1, b2,...,by) = (@1 + b1, a2+ by, ..., an + by)
a(al, ..., an) = (aay,...,aa,), a € F.
As in the case of Euclidean n-space (i.e., when F = R), affine n-space is a vector space

of dimension n over F (we shall discuss the notion of dimension more thoroughly in
the next chapter).

(3) Let R be aring with 1 and let n € Z*. Following Example 2 define

@

©))
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R" ={(a1, a2, ..., a,) | a; € R, foralli).

Make R" into an R-module by componentwise addition and multiplication by elements
of R in the same manner as when R was a field. The module R” is called the free
module of rank n over R. (We shall see shortly that free modules have the same
“universal property” in the context of R-modules that free groups were seen to have
in Section 6.3. We shall also soon discuss direct products of R-modules.) An obvious
submodule of R" is given by the i component, namely the set of n-tuples with
arbitrary ring elements in the i" component and zeros in the j® component for all
j#i

The same abelian group may have the structure of an R-module for a number of
different rings R and each of these module structures may carry useful information.
Specifically, if M is an-R-module and S is a subring of R with 1 = 1g, then M
is automatically an S-module as well. For instance the field R is an R-module, a
@Q-module and a Z-module.

If M is an R-module and for some (2-sided) ideal I of R, am = 0, forall a € I and
allm € M, we say M is annihilated by I. In this situation we can make M into an
(R/I)-module by defining an action of the quotient ring R/I on M as follows: for
eachm € M and coset r + I in R/I let

(r+Dm=rm.
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Since am = Oforalla € I and all m € M this is well defined and one easily checks
that it makes M into an (R/I)-module. In particular, when I is a maximal ideal in the
commutative ring R and I M = 0, then M is a vector space over the field R/ I (cf. the
following example).

The next example is of sufficient importance as to be singled out. It will form the
basis for our proof of the Fundamental Theorem of Finitely Generated Abelian Groups
in Chapter 12.

Example: (Z-modules)

LetR =Z, let A be any abelian group (finite or infinite) and write the operation of A as +.
Make A into a Z-module as follows: for any n € Z and a € A define

at+a+---+a (ntimes) ifn>0
na=10 ifn=0
—a—a—---—a (—ntimes) ifn <0
(here 0 is the identity of the additive group A). This definition of an action of the integers
on A makes A into a Z-module, and the module axioms show that this is the only possible

action of Z on A making it a (unital) Z-module. Thus every abelian group is a Z-module.
Conversely, if M is any Z-module, a fortiori M is an abelian group, so

Z-modules are the same as abelian groups.
Furthermore, it is immediate from the definition that
Z-submodules are the same as subgroups.

Note that for the cyclic group ( a ) written multiplicatively the additive notation na becomes
a", that is, we have all along been using the fact that ( a ) is a right Z-module (checking that
this “exponential” notation satisfies the usual laws of exponents is equivalent to checking
the Z-module axioms — this was given as an exercise at the end of Section 1.1). Note that
since Z is commutative these definitions of left and right actions by ring elements give the
same module structure.

If A is an abelian group containing an element x of finite order n then nx = 0. Thus,
in contrast to vector spaces, a Z-module may havenonzero elements x such thatnx = 0 for
some nonzero ring element n. In particular, if A has order m, then by Lagrange’s Theorem
(Corollary 9, Section 3.2) mx = 0, for all x € A. Note that then A is a module over
Z/mZ.

In particular, if p is a prime and A is an abelian group (written additively) such that
px = 0, forall x € A, then (as noted in Example 5) A is a Z/pZ-module, i.e., can be
considered as a vector space over the field F, = Z/ pZ. For instance, the Klein 4-group is
a (2-dimensional) vector space over ;. These groups are the elementary abelian p-groups
discussed in Section 4.4 (see, in particular, Proposition 17(3)).

The next example is also of fundamental importance and will form the basis for
our study of canonical forms of matrices in Sections 12.2 and 12.3.
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Example: (F[x]-modules)
Let F be a field, let x be an indeterminate and let R be the polynomial ring F[x]. Let V be
a vector space over F and let T be a linear transformation from V to V (we shall review
the theory of linear transformations in the next chapter — for the purposes of this example
one only needs to know the definition of a linear transformation). We have already seen
that V is an F-module; the linear map T will enable us to make V into an F[x]-module.
First, for the nonnegative integer n, define

T0=1,

T"=ToTo---oT (n times)

where I is the identity map from V to V and o denotes function composition (which makes
sense because the domain and codomain of T are the same). Also, for any two linear
transformations A, B from V to V and elements o, 8 € F, let «A + BB be defined by

(@A + BB)(v) = a(A(v)) + B(B(v))

(i.e., addition and scalar multiplication of linear transformations are defined pointwise).
Then a¢A + BB is easily seen to be a linear transformation from V to V, so that linear
combinations of linear transformations are again linear transformations.

We now define the action of any polynomial in x on V. Let p(x) be the polynomial
p(x) = anx" +an_1x" ' +--- + a1x + ap,

where ag, ...,an € F. Foreach v € V define an action of the ring element p(x) on the
module element v by

P = @ T" + a1 T" '+ -+ a1T + ap) (v)
=apT"W) +an T ') + - + a1 T (v) + agv

(i-e., p(x) acts by substituting the linear transformation 7 for x in p(x) and applying
the resulting linear transformation to v). Put another way, x acts on V as the linear
transformation 7 and we extend this to an action of all of F[x] on V in a natural way. It is
easy to check that this definition of an action of F[x] on V satisfies all the module axioms
and makes V into an F[x]-module.

The field F is naturally a subring of F[x] (the constant polynomials) and the action
of these field elements is by definition the same as their action when viewed as constant
polynomials. In other words, the definition of the F[x] action on V is consistent with the
given action of the field F on the vector space V, i.e., the definition extends the action of
F to an action of the larger ring F[x].

The way F[x] acts on V depends on the choice of T so that there are in general many
different F[x]-module structures on the same vector space V. For instance, if T = 0,
and p(x), v are as above, then p(x)v = agv, that is, the polynomial p(x) acts on v simply
by multiplying by the constant term of p(x), so that the F[x]-module structure is just the
F-module structure. If, on the other hand, T is the identity transformation (so 7" (v) = v,
for all n and v), then p(x)v = apv + ap—1v+--- +apv = (a, + - - - + ap)v, so that now
p(x) multiplies v by the sum of the coefficients of p(x).

To give another specific example, let V be affine n-space F" and let T be the “shift
operator”

T(x1,x2,-..,xn) = (x2,x3,...,xp,0).

340 Chap. 10  Introduction to Module Theory



Let ¢; be the usual i™ basis vector ©,0,...,0,1,0,...,0) where the 1 is in position i.
Then

ei—r ifi>k
T*(e;) =
(e l 0 ifi<k
so for example, if m < n,
(@mx™ + a1 x™ V4 4 ag)e, = O, ...,0,am, Gp1, ..., ap).

From this we can determine the action of any polynomial on any vector.

The construction of an F[x]-module from a vector space V over F and a linear trans-
formation T from V to V infactdescribes all F[x]-modules; namely, an F[x]}-moduleis a
vector space together with a linear transformation which specifies the action of x. This is
because if V is any F[x]-module, then V is an F-module and the action of the ring element
x on V is a linear transformation from V to V. The axioms for a module ensure that the
actions of F and x on V uniquely determine the action of any element of F[x] on V. Thus
there is a bijection between the collection of F[x]-modules and the collection of pairs V, T

V a vector space over F
V an F[x]-module «—> and
T : V — V alinear transformation

given by
the element x acts on V as the linear transformation 7.

Now we consider F[x]-submodules of V where, as above, V is any F[x]-module and
T is the linear transformation from V to V' given by the action of x. An F[x]-submodule W
of V must first be an F-submodule, i.e., W must be a vector subspace of V. Secondly, W
must be sent to itself under the action of the ring element x, i.e., we must have T'(w) € W,
for all w € W. Any vector subspace U of V such that T(U) C U is called T-stable or
T-invariant. If U is any T -stable subspace of V it follows that T"(U) C U, foralln € Z*
(forexample, T(U) € U implies T2(U) = T(T(U)) € T(U) C U). Moreover any linear
combination of powers of T then sends U into U so that U is also stable by the action of
any polynomial in 7. Thus U is an F[x]-submodule of V. This shows that

the F[x]-submodules of V are precisely the T-stable subspaces of V.
In terms of the bijection above,

W a subspace of V
W an F[x]-submodule «—> and
W is T-stable

which gives a complete dictionary between F[x]-modules V and vector spaces V together
with a given linear transformation 7 from V to V.

For instance, if T is the shift operator defined on affine n-space above and k is any
integer in the range O < k < n, then the subspace

Uy ={(x1,x2,...,x,0,...,0) | x; e F}

is clearly T'-stable so is an F[x]-submodule of V.
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We emphasize that an abelian group M may have many different R-module struc-
tures, even if the ring R does not vary (in the same way that a given group G may act in
many ways as a permutation group on some fixed set £2). We shall see that the structure
of an R-module is reflected by the ideal structure of R. When R is a field (the subject
of the next chapter) all R-modules will be seen to be products of copies of R (as in
Example 3 above).

We shall see in Chapter 12 that the relatively simple ideal structure of the ring F[x]
(recall that F[x] is a Principal Ideal Domain) forces the F[x]-module structure of V to
be correspondingly uncomplicated, and this in turn provides a great deal of information
about the linear transformation 7 (in particular, gives some nice matrix representations
for T: its rational canonical form and its Jordan canonical form). Moreover, the same
arguments which classify finitely generated F[x]-modules apply to any Principal Ideal
Domain R, and when these are invoked for R = Z, we obtain the Fundamental Theorem
of Finitely Generated Abelian Groups. These results generalize the theorem that every
finite dimensional vector space has a basis.

In Part VI of the book we shall study modules over certain noncommutative tings
(group rings) and see that this theory in some sense generalizes both the study of F[x]-
modules in Chapter 12 and the notion of a permutation representation of a finite group.

We establish a submodule criterion analogous to that for subgroups of a group in
Section 2.1.

Proposition 1. (The Submodule Criterion) Let R be aring and let M be an R-module.
A subset N of M is a submodule of M if and only if

(1) N #0,and

(2) x+rye Nforallr € Randforallx,y € N.

Proof: If N is asubmodule, then0 € N so N # . Also N is closed under addition
and is sent to itself under the action of elements of R. Conversely, suppose (1) and (2)
hold. Let r = —1 and apply the subgroup criterion (in additive form) to see that N is
a subgroup of M. In particular, 0 € N. Now let x = 0 and apply hypothesis (2) to see
that NV is sent to itself under the action of R. This establishes the proposition.

We end this section with an important definition and some examples.

Definition. Let R be a commutative ring withidentity. An R-algebrais aring A with
identity together with a ring homomorphism f : R — A mapping 1g to 14 such that
the subring f(R) of A is contained in the center of A.

If A is an R-algebra then it is easy to check that A has a natural left and right
(unital) R-module structure defined by r -a = a - r = f(r)a where f(r)a is just the
multiplication in the ring A (and this is the same as af (r) since by assumption f(r)
lies in the center of A). In general it is possible for an R-algebra A to have other left (or
right) R-module structures, but unless otherwise stated, this natural module structure
on an algebra will be assumed.
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Definition. If A and B are two R-algebras, an R-algebra homomorphism (or isomor-
phism) is a ring homomorphism (isomorphism, respectively) ¢ : A — B mapping 14
to 1 such that (r -a) =r - ¢(a) forallr € Rand a € A.

Examples

Let R be a commutative ring with 1.

(1) Any ring with identity is a Z-algebra.

(2) For any ring A withidentity, if R is a subring of the center of A containing the identity
of A then A is an R-algebra. In particular, a commutative ring A containing 1 is an
R-algebra for any subring R of A containing 1. For example, the polynomial ring
R[x] is an R-algebra, the polynomial ring over R in any number of variables is an
R-algebra, and the group ring RG for a finite group G is an R-algebra (cf. Section 7.2).

(3) If A is an R-algebra then the R-module structure of A depends only on the subring
f(R) contained in the center of A as in the previous example. If we replace R by its
image f(R) we see that “up to a ring homomorphism” every algebra A arises froma
subring of the center of A that contains 14.

(4) A special case of the previous example occurs when R = F is a field. In this case
F is isomorphic to its image under f, so we can identify F itself as a subring of A.
Hence, saying that A is an algebra over a field F is the same as saying that the ring A
contains the field F in its center and the identity of A and of F are the same (this last
condition is necessary, cf. Exercise 23).

Suppose that A is an R-algebra. Then A is a ring with identity that is a (unital) left
R-module satisfying r - (ab) = (r - a)b = a(r - b) forallr € Rand a, b € A (these
are all equal to the product f (r)ab in the ring A—recall that f(R) is contained in the
center of A). Conversely, these conditions on a ring A define an R-algebra, and are
sometimes used as the definition of an R-algebra (cf. Exercise 22).

EXERCISES

In these exercises R is aring with 1 and M is a left R-module.
1. Provethat Om = 0 and (—1)m = —m for allm € M.
2. Prove that R* and M satisfy the two axioms in Section 1.7 for a group action of the
multiplicative group R* on the set M.

3. Assume that rm = 0 for some r € R and some m € M with m # 0. Prove that r does not
have a left inverse (i.e., there is no s € R such that sr = 1).
4. Let M be the module R" described in Example 3 and let Iy, I, . .., I, be left ideals of R.
Prove that the following are submodules of M:
@) {(x1,x2,....x0) | x; € I}}
(b) {(x1,x2,...,x) | xi € Randx1 +x2+ --- +x, =0}
5. For any left ideal I of R define
IM = {Zaim,- |ai € I, mj € M}
finite

to be the collection of all finite sums of elements of the form am wherea € I andm € M.
Prove that I M is a submodule of M.

6. Show that the intersection of any nonempty collection of submodules of an R-module is
a submodule.
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7.

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Let Ny € N2 C - - - be an ascending chain of submodules of M. Prove that U,?_E_IN,- isa
submodule of M.

An element m of the R-module M is called a torsion element if rm = 0 for some nonzero
element r € R. The set of torsion elements is denoted

Tor(M) = {m € M | rm = 0 for some nonzero r € R}.

(a) Prove that if R is an integral domain then Tor(M) is a submodule of M (called the
torsion submodule of M).

(b) Give anexampleofaring R and an R-module M such that Tor(M) isnot a submodule.
[Consider the torsion elements in the R-module R.]

(c) If R haszerodivisors show that every nonzero R-module has nonzero torsion elements.

. If N is a submodule of M, the annihilator of N in R is defined to be

{r € R | rn =0forall n € N}. Prove that the annihilator of N in R is a 2-sided ideal of R.

If I is aright ideal of R, the annihilator of I in M is defined to be

{m € M | am = Ofor all a € I}. Prove thatthe annihilatorof I in M is a submodule of M.

Let M be the abelian group (i.e., Z-module) Z/247Z x Z/15Z x Z/50Z.

(a) Find the annihilator of M in Z (i.e., a generator for this principal ideal).

(b) Let I = 27Z. Describe the annihilator of I in M as a direct product of cyclic groups.

In the notation of the preceding exercises prove the following facts about annihilators.

(@) Let N be asubmodule of M and let I be its annihilatorin R. Provethat the annihilator
of I in M contains N. Give an example where the annihilator of I in M does not
equal N.

(b) Let I bearightideal of R and let N be its annihilatorin M. Prove that the annihilator of
N in R contains I. Give an example where the annihilator of N in R does not equal 1.

Let / be an ideal of R. Let M’ be the subset of elements a of M that are annihilated by

some power, I¥, of the ideal /, where the power may depend on a. Prove that M’ is a

submodule of M. [Use Exercise 7.]

Let z be an element of the center of R, i.e., zr = rz for allr € R. Prove that zM is a

submodule of M, where zM = {zm | m € M}. Show that if R is the ring of 2 x 2 matrices

over a field and e is the matrix with a 1 in position 1,1 and zeros elsewhere then eR is not

aleft R-submodule (where M = R is considered as a left R-module as in Example 1) —

in this case the matrix e is not in the center of R.

If M is a finite abelian group then M is naturally a Z-module. Can this action be extended

to make M into a Q-module?

Prove that the submodules Uj, described in the example of F[x]-modules are all of the

F[x]-submodules for the shift operator.

Let T be the shift operator on the vector space V and letey, .. ., e, be the usual basis vectors

described inthe example of F[x]-modules. If m > n find (a,,, x™ +am_1x" 4 - Jap)en.

Let F = R, let V = R? and let T be the linear transformation from V to V which

is rotation clockwise about the origin by 7 /2 radians. Show that V and O are the only

F[x]-submodules for this 7.

Let F = R, let V. = R? and let T be the linear transformation from V to V which is

projection onto the y-axis. Show that V, 0, the x-axis and the y-axis are the only F[x]-

submodules for this 7.

Let F = R, let V. = R? and let T be the linear transformation from V to V which is
rotation clockwise about the origin by 7 radians. Show that every subspace of V is an
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F[x]-submodule for this T'.

21. Letn € Z*,n > 1 and let R bethering of n x n matrices with entries from a field F. Let
M be the set of n x n matrices with arbitrary elements of F in the first column and zeros
elsewhere. Show that M is a submodule of R when R is considered as a left module over
itself, but M is not a submodule of R when R is considered as a right R-module.

22. Supposethat A is aring withidentity 1 4 thatis a (unital) left R-module satisfying r - (ab) =
(r-a)b =a(r-b)forallr € R and a, b € A. Prove that the map f : R — A defined
by f(r) = r - 14 is a ring homomorphism mapping 1 to 14 and that f(R) is contained
in the center of A. Conclude that A is an R-algebra and that the R-module structure on A
induced by its algebra structure is precisely the original R-module structure.

23. Let A be the direct product ring C x C (cf. Section 7.6). Let 1] denote the identity map

on C and let 72 denote complex conjugation. For any pair p, g € {1, 2} (not necessarily
distinct) define

frag: C->CxC by Jp.q (@) = (tp(2), 74(2)).

So, for example, f21 : z — (Z, z), where Z is the complex conjugate of z, i.e., 72(2).

(a) Prove that each fp 4 is an injective ring homomorphism, and that they all agree on
the subfield R of C. Deduce that A has four distinct C-algebra structures. Explicitly
give the action z - (u, v) of a complex number z on an ordered pair in A in each case.

(b) Provethatif fp 4 # fp .o thentheidentity map on A isnot a C-algebrahomomorphism
from A considered as a C-algebra via f, 4 to A considered a C-algebra via fy ¢
(although the identity is an R-algebra isomorphism).

(c) Prove that for any pair p, g there is some ring isomorphism from A to itself such that
A is isomorphic as a C-algebra via fp 4 to A considered as C-algebra via f,; (the
“natural” C-algebra structure on A).

Remark: In the preceding exercise A = C x C is not a C-algebraover either of the direct factor
component copies of C (for example the subring C x 0 = C) since it is not a unital module
over these copies of C (the 1 of these subrings is not the same as the 1 of A).

10.2 QUOTIENT MODULES AND MODULE HOMOMORPHISMS
This section contains the basic theory of quotient modules and module homomorphisms.

Definition. Let R be aring and let M and N be R-modules.

(1) Amap ¢ : M — N is an R-module homomorphism if it respects the R-module
structures of M and NV, i.e.,

@ ¢o(x+y)=9x)+e¢(y), forallx,y e M and
(b) o(rx) =re(x), forallr € R, x € M.

(2) An R-module homomorphism is an isomorphism (of R-modules) if it is both
injective and surjective. The modules M and N are said to be isomorphic,
denoted M = N, if there is some R-module isomorphism ¢ : M — N.

@) If ¢ : M — N is an R-module homomorphism, letker ¢ = {m € M | p(m) =
0} (the kernel of ¢) and let ¢(M) = {n € N | n = @(m) for some m € M} (the
image of ¢ , as usual).

(4) Let M and N be R-modules and define Homg (M, N) to be the set of all R-
module homomorphisms from M into N.
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Any R-module homomorphism is also a homomorphism of the additive groups, but
not every group homomorphism need be a module homomorphism (because condition
(b) may not be satisfied). The unqualified term “isomorphism” when applied to R-
modules will always mean R-module isomorphism. When the symbol = is used without
qualification it will denote an isomorphism of the respective structures (which will be
evident from the context).

It is an easy exercise using the submodule criterion (Proposition 1) to show that
kernels and images of R-module homomorphisms are submodules.

Examples

@

@

3
C))

®

If Risaring and M = R is amodule overitself, then R-module homomorphisms (even
from R to itself) need not be ring homomorphisms and ring homomorphisms need not
be R-module homomorphisms. For example, when R = Z the Z-module homomor-
phism x > 2x is not a ring homomorphism (1 does not map to 1). When R = F[x]
the ring homomorphism ¢ : f(x) — f(x?) is not an F[x]-module homomorphism
(if it were, we would have x? = @(x) = ¢(x - 1) = xp(1) = x).

Let Rbe aring, letn € Z* and let M = R". One easily checks that for each
i € {1,...,n} the projection map

i :R" > R by mxi....,xn) =x;

is a surjective R-module homomorphism with kernel equal to the submodule of n-
tuples which have a zero in position i.

If R is a field, R-module homomorphisms are called linear transformations. These
will be studied extensively in Chapter 11.

For the ring R = Z the action of ring elements (integers) on any Z-module amounts to
just adding and subtracting within the (additive) abelian group structure of the module
so that in this case condition (b) of a homomorphism is implied by condition (a). For
example, p(2x) = p(x + x) = @(x) + ¢(x) = 2¢(x), etc. It follows that

Z-module homomorphisms are the same as abelian group homomorphisms.

Let R be a ring, let I be a 2-sided ideal of R and suppose M and N are R-modules
annihilated by I (i.e, am = Oandan = O foralla € I, n € N and m € M).
Any R-module homomorphism from N to M is then automatically a homomorphism
of (R/I)-modules (see Example 5 of Section 1). In particular, if A is an additive
abelian group such that for some prime p, px = 0O for all x € A, then any group
homomorphism from A to itself is a Z/ pZ-module homomorphism, i.e., is a linear
transformation over the field F,. In particular, the group of all (group) automorphisms
of A is the group of invertible linear transformations from A to itself: GL(A).

Proposition 2. Let M, N and L be R-modules.

@
V)
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Amapg : M — N is an R-module homomorphism if and only if
o(rx+y)=rex)+¢(y)forall x,y € Mandall r € R.
Let ¢, ¥ be elements of Homg (M, N). Define ¢ + ¢ by

(¢ +¥)m) = p(m)+¥(m)  forallm e M.

Then ¢+ € Homg (M, N) and with this operation Homg (M, N) is an abelian
group. If R is a commutative ring then for » € R define r¢ by

re)(m) = r(p(m)) forallm € M.
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Then r¢ € Homg (M, N) and with this action of the commutative ring R the
abelian group Homg (M, N) is an R-module.

3) If ¢ € Homg (L, M) and € Homg(M, N) then ¢ o ¢ € Homg(L, N).

(4) With addition as above and multiplication defined as function composition,
Homg (M, M) is a ring with 1. When R is commutative Homg (M, M) is an
R-algebra.

Proof: (1) Certainly p(rx+y) = re(x)+¢(y) ifg is an R-module homomorphism.
Conversely, if o(rx + y) = reo(x) + ¢(y), take r = 1 to see that ¢ is additive and take
y = 0 1o see that ¢ commutes with the action of R on M (i.e., is homogeneous).

(2) It is straightforward to check that all the abelian group and R-module axioms
hold with these definitions — the details are left as an exercise. We note that the
commutativity of R is used to show that r¢ satisfies the second axiom of an R-module
homomorphism, namely,

(r19)(ram) = ri(rym) (by definition of r;¢)
=rira(p(m)) (since ¢ is a homomorphism)
= rprip(m) (since R is commutative)
=r(rng)(m) (by definition of r¢).
Verification of the axioms relies ultimately on the hypothesis that N is an R-module.
The domain M could in fact be any set — it does not have to be an R-module nor an

abelian group.
(3) Letp and ¢ be as givenand letr € R, x, y € L. Then

W o)rx+y) = Y(prx +y))

= Y o)+ ¢()) (by (1) applied to ¢)
=ry(e(x)) + ¥ (p()) (by (1) applied to )
=r({ op)(x)+ (¥ c)(¥)

s0, by (1), ¥ o ¢ is an R-module homomorphism.

(4) Note that since the domain and codomain of the elements of Homg (M, M)
are the same, function composition is defined. By (3), it is a binary operation on
Homg (M, M). As usual, function composition is associative. The remaining ring
axioms are straightforward to check — the details are left as an exercise. The identity
function, I, (as usual, I (x) = x, for all x € M) is seen to be the multiplicative identity
of Homg (M, M). If R is commutative, then (2) shows that the ring Homgz (M, M) is
a left R-module and defining ¢r = r¢ for all ¢ € Homg(M, M) and r € R makes
Homg (M, M) into an R-algebra.

Definition. The ring Homg(M, M) is called the endomorphism ring of M and will
often be denoted by Endg (M), or just End(M) when the ring R is clear from the context.
Elements of End(M) are called endomorphisms.
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When R is commutative there is a natural map from R into End(M) given by
r — rl, where the latter endomorphism of M is just multiplication by r on M (cf.
Exercise 7). The image of R is contained in the center of End(M) so if R has an
identity, End()M) is an R-algebra. The ring homomorphism (cf. Exercise 7) from R to
Endg (M) may not be injective since for some r we may have rm = Oforallm € M
(e.g, R=7Z,M = Z/2Z, and r = 2). When R is a field, however, this map is injective
(in general, no unit is in the kernel of this map) and the copy of R in Endg (M) is called
the (subring of) scalar transformations.

Next we prove that every submodule N of an R-module M is “normal” in the
sense that we can always form the quotient module M /N, and the natural projection
w: M — M/N is an R-module homomorphism with kernel N. The proof of this fact
and, more generally, the subsequent proofs of the isomorphism theorems for modules
follow easily from the corresponding facts for groups. The reason for this is because a
module is first of all an abelian group and so every submodule is automatically a normal
subgroup and any module homomorphism is, in particular, a homomorphism of abelian
groups, all of which we havealready considered in Chapter 3. Whatremains tobe proved
in order to extend results on abelian groups to corresponding results on modules is to
check that the action of R is compatible with these group quotients and homomorphisms.
For example, the map 7 above was shown to be a group homomorphism in Chapter 3
but the abelian group M/N must be shown to be an R-module (i.e., to have an action
by R) and property (b) in the definition of a module homomorphism must be checked
form.

Proposition 3. Let R be aring, let M be an R-module and let N be a submodule of M.
The (additive, abelian) quotient group M/N canbe made into an R-module by defining
an action of elements of R by

rx+N)=(@x)+ N, forallr e R, x+ N € M/N.

The natural projection map 7 : M — M/N defined by w(x) = x + N is an R-module
homomorphism with kernel N.

Proof: Since M is an abelian group under + the quotient group M/N is defined
and is an abelian group. To see that the action of the ring element  on the coset x + N is
well defined, suppose x + N = y+N,i.e.,x—y € N. Since N is a (left) R-submodule,
r(x —y) € N.Thusrx —ry € Nandrx + N = ry + N, as desired. Now since the
operations in M/N are “compatible” with those of M, the axioms for an R-module are
easily checked in the same way as was done for quotient groups. For example, axiom
2(b) holds as follows: forallr;, r, € Rand x + N € M/N, by definition of the action
of ring elements on elements of M/N

(nr2))(x +N)=(rinx)+ N
=ri(rzx + N)
=rn(r2(x + N)).
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The other axioms are similarly checked — the details are leftas an exercise. Finally,
the natural projection map 7 described above is, in particular, the natural projection
of the abelian group M onto the abelian group M /N hence is a group homomorphism
with kernel N. The kernel of any module homomorphism is the same as its kernel when
viewed as a homomorphism of the abelian group structures. It remains only to show
is a module homomorphism, i.e., w(rm) = rar(m). But

n@rm)=rm+ N
=r(m+N) (by definition of the action of R on M/N)

= rm(m).

This completes the proof.

All the isomorphism theorems stated for groups also hold for R-modules. The
proofs are similar to that of Proposition 3 above in that they begin by invoking the
corresponding theorem for groups and then prove that the group homomorphisms are
also R-module homomorphisms. To state the Second Isomorphism Theorem we need
the following.

Definition. Let A, B be submodules of the R-module M. The sum of A and B is the
set

A+B={a+blaeA,be B}

One can easily check that the sum of two submodules A and B is a submodule and
is the smallest submodule which contains both A and B.

Theorem 4. (Isomorphism Theorems)

(1) (The First Isomorphism Theorem for Modules) Let M, N be R-modules and let
¢ : M — N be an R-module homomorphism. Then ker ¢ is a submodule of
M and M /ker ¢ = p(M).

(2) (The Second Isomorphism Theorem) Let A, B be submodules of the R-module
M. Then (A+ B)/B= A/(AN B).

(3) (The Third Isomorphism Theorem) Let M be an R-module, and let A and B be
submodules of M with A C B. Then (M/A)/(B/A) = M/B.

(4) (The Fourth or Lattice Isomorphism Theorem) Let N be a submodule of the
R-module M. There is a bijection between the submodules of M which contain
N and the submodules of M/N. The correspondence is given by A < A/N,
for all A © N. This correspondence commutes with the processes of taking
sums and intersections (i.e., is a lattice isomorphism between the lattice of
submodules of M/N and the lattice of submodules of M which contain N).

Proof: Exercise.
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EXERCISES

In these exercises R is a ring with 1 and M is a left R-module.

1. Usethe submodule criterion to show thatkernels and images of R-modulehomomorphisms

2.

3.

=)

10.

11.

12.

13.

14.

are submodules.

Show that the relation “is R-module isomorphic to” is an equivalence relation on any set
of R-modules.

Give an explicit example of a map from one R-module to another which is a group homo-
morphism but not an R-module homomorphism.

. Let A be any Z-module, let a be any element of A and let » be a positive integer. Prove that

the map ¢, : Z/nZ — A given by ¢(k) = ka is a well defined Z-module homomorphism
if and only if na = 0. Prove that Homz(Z/nZ, A) = A,, where A,, = {a € A | na = 0}

(so A, is the annihilator in A of the ideal (n) of Z — cf. Exercise 10, Section 1). ,

. Exhibit all Z-module homomorphisms from Z/30Z to Z/21Z.
. Prove that Homgz(Z/nZ, Z/mZ) = Z/(n, m)Z.
. Let z be a fixed element of the center of R. Prove that the map m + zm is an R-

module homomorphism from M to itself. Show that for a commutative ring R the map
from R to Endg (M) given by r + rI is a ring homomorphism (where [ is the identity
endomorphism).

. Let ¢ : M — N be an R-module homomorphism. Prove that ¢(Tor(M)) € Tor(N) (cf.

Exercise 8 in Section 1).

. Let R be a commutative ring. Prove that Homg (R, M) and M are isomorphic as left

R-modules. [Show that each element of Hompg (R, M) is determined by its value on the
identity of R.]
Let R be a commutative ring. Prove that Homg (R, R) and R are isomorphic as rings.

LetAq, Az, ..., A, be R-modules and let B; be asubmodule of A; foreachi =1,2,...,n.
Prove that

(A1 X --- X Ap)/(B1 X --- X Bp) = (A1/B)) X -+ - X (An/Bn).
[Recall Exercise 14 in Section 5.1.]
Let I be aleftideal of R and let n be a positive integer. Prove

R'/IR" = R/IR x ---x R/IR (n times)
where I R" is defined as in Exercise 5 of Section 1. [Use the preceding exercise.]

Let I be a nilpotent ideal in a commutative ring R (cf. Exercise 37, Section 7.3), let M
and N be R-modules and let ¢ : M — N be an R-module homomorphism. Show that if
theinducedmap @ : M/IM — N [IN is surjective, then g is surjective.

Let R = Z[x] be the ring of polynomials in x and let A = Z[t;, 1, ...] be the ring of

polynomials in the independent indeterminates #1, f, . ... Define an action of R on A as

follows: 1)let1 € R acton A as theidentity,2) forn > 1letx" ol =1, let x" ot; = 1,4

fori =1,2,...,and let x" act as 0 on monomials in A of (total) degree at least two, and

3) extend Z-linearly, i.e., so that the module axioms 2(a) and 2(c) are satisfied.

(a) Show that xP*9 ot; = xPo(x90t;) = Ip+¢+i and use this to show that under this
action the ring A is a (unital) R-module.

(b) Show that the map ¢ : R — A defined by ¢(r) = r o 14 is an R-module homomor-
phism of the ring R into the ring A mapping 1z to 14, but is not a ring homomorphism
from R to A.
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70.3 GENERATION OF MODULES, DIRECT SUMS, AND
FREE MODULES

N
Let R be aring with 1. As in the preceding sections the term “module” will mean “left
module.” We first extend the notion of the sum of two submodules to sums of any finite
number of submodules and define the submodule generated by a subset.

Definition. Let M be an R-module and let Ny, ..., N, be submodules of M.
(1) Thesumof Ny, ..., N, is the set of all finite sums of elements from the sets N;:
{ai +a2+---+a, | a € N; foralli}. Denote this sum by Ny +--- + N,,.
(2) For any subset A of M let

RA = (riay+nra+---+rpan | r1,....7Tm €R, ay,...,a, € A, m € Z*})

(where by convention RA = {0} if A = {J). If Ais the finite set {a;, a2, .. ., a,}
we shall write Ra; + Ras + - - - + Ra, for RA. Call RA the submodule of M
generated by A. If N is a submodule of M (possibly N = M) and N = RA,
for some subset A of M, we call A a set of generators or generating set for N,
and we say N is generated by A.

(3) A submodule N of M (possibly N = M) is finitely generated if there is some
finite subset A of M such that N = RA, that s, if N is generated by some finite
subset.

(4) A submodule N of M (possibly N = M) is cyclic if there exists an element
a € M such that N = Ra, that is, if N is generated by one element:

N=Ra={ra|r €R}.

Note that these definitions do not require that the ring R contain a 1, however
this condition ensures that A is contained in RA. It is easy to see using the Submodule
Criterion thatfor any subset A of M, RA isindeed a submodule of M and is the smallest
submodule of M which contains A (i.e., any submodule of M which contains A also
contains RA). In particular, for submodules Ny, ..., N, of M, Ny + --- + N, is just
the submodule generated by the set Ny U - .- UN,, and is the smallest submodule of M
containing N;, for alli. If Ny, ..., N, are generated by sets Ay, ..., A, respectively,
then N; + --- + N, is generated by A; U --. U A,. Note that cyclic modules are, a
fortiori, finitely generated.

A submodule N of an R-module M may have many different generating sets (for
instance the set N itself always generates N). If N is finitely generated, then there is a
smallest nonnegative integer d such that N is generated by d elements (and no fewer).
Any generating set consisting of d elements will be called a minimal set of generators
for N (it is not unique in general). If N is not finitely generated, it need not have a
minimal generating set.

The process of generating submodules of an R-module M by taking subsets A of
M and forming all finite “R-linear combinations” of elements of A will be our primary
way of producing submodules (this notion is perhaps familiar from vector space theory
where it is referred to as taking the span of A). The obstruction which made the
analogous process so difficult for groups in general was the noncommutativity of group
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operations. Forabelian groups, G, however, it was much simpler to control the subgroup
( A) generated by A, for a subset A of G (see Section 2.4 for the complete discussion
of this). The situation for R-modules is similar to that of abelian groups (even if R is
a noncommutative ring) because we can always collect “like terms” in elements of A,
i.e., terms such as rja; + rya; + s1a; can always be simplified to (r; + s1)a; + raa;.
This again reflects the underlying abelian group structure of modules.

Examples

@

Let R = Z and let M be any R-module, that is, any abelian group. If a € M, then
Za is just the cyclic subgroup of M generated by a: {(a) (compare Definition 4 above
with the definition of a cyclic group). More generally, M is generated as a Z-module
by a set A if and only if M is generated as a group by A (that is, the action of ring
elements in this instance produces no elements that cannot already be obtained from
A by addition and subtraction). The definition of finitely generated for Z-modules is
identical to that for abelian groups found in Chapter 5.

(2) Let R be a ring with 1 and let M be the (left) R-module R itself. Note that R is

3

a finitely generated, in fact cyclic, R-module because R = Rl (i.e., we can take
A = {1}). Recall that the submodules of R are precisely the left ideals of R, so saying
I is a cyclic R-submodule of the left R-module R is the same as saying [ is a principal
ideal of R (usually the term “principal ideal” is used in the context of commutative
rings). Also, saying I is a finitely generated R-submodule of R is the same as saying
I is a finitely generated ideal. When R is a commutative ring we often write AR or
aR for the submodule (ideal) generated by A or a respectively, as we have been doing
for Z when we wrote nZ. In this situation AR = RA and aR = Ra (elementwise
as well). Thus a Principal Ideal Domain is a (commutative) integral domain R with
identity in which every R-submodule of R is cyclic.

Submodules of a finitely generated module need not be finitely generated: take
M to be the cyclic R-module R itself where R is the polynomial ring in infinitely
many variables x1, x2, x3, ... with coefficients in some field F. The submodule (i.e.,
2-sided ideal) generated by {x;, x2, ...} cannot be generated by any finite set (note
that one must show that no finite subset of this ideal will generate it).
Let R be aring with 1 and let M be the free module of rank n over R, as described in
the first section. For eachi € {1,2,...,n}lete; = (0,0,...,0,1,0,...,0), where
the 1 appears in position i. Since

n
(51,82, ---,8,) = Zsiei
i=1

it is clear that M is generated by {e;, ..., e,}. If R is commutative then this is a
minimal generating set (cf. Exercises 2 and 27).

(4) Let F be a field, let x be an indeterminate, let V be a vector space over F and let
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T be a linear transformation from V to V. Make V into an F[x]-module via 7.
Then V is a cyclic F[x]-module (with generator v) if and only if V = {p(x)v |
p(x) € F[x]}, that is, if and only if every element of V can be written as an F-linear
combination of elements of the set {7"(v) | n > 0}. This in turn is equivalent to
saying {v, T (v), T2(v), ...} span V as avector space over F.

Forinstance if T is theidentity linear transformation from V to V or the zero linear
transformation, then for every v € V and every p(x) € F[x] we have p(x)v = av for
some ¢ € F. Thus if V has dimension > 1, V cannot be a cyclic F[x]-module.
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For another example suppose V is affine n-space and T is the “shift operator”
described in Section 1. Let e; be the i'! basis vector (as usual) numbered so that T
is defined by T*(e,) = e,_x for 1 < k < n. Thus V is spanned by the elements
en,T(en),..., 71 (en), that is, V is a cyclic F[x}-module with generator e,. For
n > 1, V is not, however, a cyclic F-module (i.e., is not a 1-dimensional vector space
over F).

Definition. Let M;, ..., M, be a collection of R-modules. The collection of k-tuples
(my, ma, ..., m;) wherem; € M; with addition and action of R defined componentwise
is called the direct product of My, ..., M, denoted M; x --- x M.

It is evident that the direct product of a collection of R-modules is again an R-
module. The direct product of M, ..., M, is also referred to as the (external) direct
sum of M, ..., M; and denoted M; & . - - & M,. The direct product and direct sum of
an infinite number of modules (which are different in general) are defined in Exercise
20.

The next proposition indicates when a module is isomorphic to the direct product
of some of its submodules and is the analogue for modules of Theorem 9 in Section 5.4
(which determines when a group is the direct product of two of its subgroups).

Proposition 5. Let Nq, N,, ..., Nt be submodules of the R-module M. Then the
following are equivalent:
(1) Themapm : Ny x Ny X --- X N, > N1 + Ny + - - - + N, defined by

m(a, ay,....,q)=a+ay+---+a

is an isomorphism (of R-modules): N;+Ny+---+ Ny = Ny X Ny X -+ - X Ny.
2) Nyn(Ni+N2+---+Nj-1+Njji+---+N) =0forall j € (1,2,...,k}.
(3) Every x € N; +- - - + N, canbe written uniquely in the forma; +a, +- - -+ ax
with a; € N;.

Proof: To prove (1) implies (2), suppose for.some j that (2) fails to hold and let
aj € (V; +---+Nj_1‘+Nj+1 + ---+ Ni) N N;, with a;j # 0. 'I_’hen
ai=a+---+aj1t+aj+---+a

for some a; € N;, and (ay, ..., aj_1, —aj, aj41, . . ., a;) would be a nonzero element
of ker 7, a contradiction.
Assume now that (2) holds. If for some module elements a;, b; € N; we have

atat---tag=b+by+---+b
then for each j we have
a—bj=b1—a))+---+bj-1 —aj-1) + bj1 —aj11) +--- + (b — a).

Thelefthandsideisin N; and the right side belongs to Ny +- - -+ Nj_1+Nj1+- - -+ Ni.
Thus
a; ——bj € Njﬂ(N1+---+N,-_1 +Nj+1 +---+N)=0.

This shows a; = b; for all j, and so (2) implies (3).
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Finally, to see that (3) implies (1) observe first that the map 7 is clearly a surjec-
tive R-module homomorphism. Then (3) simply implies 7 is injective, hence is an
isomorphism, completing the proof.

If an R-module M = N;+ N+ - - -+ Ny is the sum of submodules Ny, N, ..., Ny
of M satisfying the equivalent conditions of the proposition above, then M is said to be
the (internal) direct sum of Ny, N,, ..., N, written

M=N&®&ND--- B N;.

By the proposition, this is equivalent to the assertion that every element m of M can be
written uniquely as a sum of elements m = ny +nz + - - - + ny withn; € N;. (Note that
part (1) of the proposition is the statement that the internal direct sum of N1, Na, ..., Ni
is isomorphic to theirexternal direct sum, which is the reason we identify them and use
the same notation for both.)

Definition. An R-module F is said to be free on the subset A of F if for every
nonzero element x of F, there exist unique nonzero elements ry, r2, ..., r, of R and
unique ai, az, . .., a, in A such that x = ria; +raaz +- - - +rpa,, forsomen € Z*. In
this situation we say A is a basis or set of free generators for F. If R is a commutative
ring the cardinality of A is called the rank of F (cf. Exercise 27).

One should be careful to note the difference between the uniqueness property of
direct sums (Proposition 5(3)) and the uniqueness property of free modules. Namely,
in the direct sum of two modules, say N; @ N,, each element can be written uniquely
as nj + ny; here the uniqueness refers to the module elements n; and n;. In the case of
free modules, the uniqueness is on the ring elements as well as the module elements.
For example, if R = Z and Ny = N, = Z/2Z, then each element of N; @ N; has a
unique representation in the form n; +n; whereeach n; € N;, however n; (for instance)
can be expressed as n; or 3n; or 5n; ... etc., so each element does not have a unique
representation in the form rya; + raz, where ri, r; € R, a; € Ny and a; € N,. Thus
Z/27 & Z/2Z is not a free Z-module on the set {(1, 0), (0, 1)}. Similarly, it is not free
on any set.

Theorem 6. For any set A there is a free R-module F(A) onthe set A and F(A) satisfies
the following universal property: if M is any R-module and ¢ : A — M is any map
of sets, then there is a unique R-module homomorphism @ : F(A) — M such that
@(a) = ¢(a), for all a € A, that is, the following diagram commutes.

inclusion

A—>F(4)

xf

When A is the finite set {a@y, a3, ..., a,}, F(A) = Ray ® Ra; & --- ® Ra, = R".
(Compare: Section 6.3, free groups.)

Proof: Let F(A) = {0}if A = @. If A is nonempty let F(A) be the collection of
all set functions f : A — R such that f(a) = O for all but finitely many a € A. Make
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F (A) into an R-module by pointwise addition of functions and pointwise multiplication
of aring element times a function, i.e.,

(f+8@a)= f(a)+ga) and
rf)@a) =r(f(a)), foralla € A, r € Rand f, g € F(A).

It is an easy matter to check that all the R-module axioms hold (the details are omitted).
Identify A as a subset of F(A) bya — f,, where f, is the function whichis 1 ata and
zero elsewhere. We can, in this way, think of F(A) as all finite R-linear combinations
of elements of A by identifying each function f with the sum ria, + r,a; +- - - +rqa,,
where f takes on the value r; at g; and is zero at all other elements of A. Moreover,
each element of F(A) has a unique expression as such a formal sum. To establish the
universal property of F(A) suppose ¢ : A — M is a map of the set A into the R-module
M. Define @ : F(A) > M by

P : Zn: ria; = Zn: rig(a;).
i=1 i=1

By the uniqueness of the expression for the elements of F(A) as linear combinations
of the a; we see easily that @ is a well defined R-module homomorphism (the details
are left as an exercise). By definition, the restriction of @ to A equals ¢ . Finally, since
F (A) is generated by A, once we know the values of an R-module homomorphism on
A its values on every element of F(A) are uniquely determined, so @ is the unique
extension of ¢ to all of F(A). .

When A is the finite set {a1, ay, . . ., a,} Proposition 5(3) shows that F(A) = Ra;®
Ra; @ - -- @ Ra,. Since R = Ra; for all i (under the map r — ra;) Proposition 5(1)
shows that the direct sum is isomorphic to R".

Corollary 7.
(1) If F; and F; are free modules on the same set A, there is a unique isomorphism
between F; and F, which is the identity map on A.
(2) If F is any free R-module with basis A, then F = F(A). In particular, F enjoys
the same universal property with respect to A as F(A) does in Theorem 6.

Proof: Exercise.

If F is a free R-module with basis A, we shall often (particularly in the case of
vector spaces) define R-module homomorphisms from F into other R-modules simply
by specifying their values on the elements of A and then saying “extend by linearity.”
Corollary 7(2) ensures that this is permissible.

When R = Z, the free module on a set A is called the free abelian group on A. If
|A| = n, F(A) is called the free abelian group of rank n and is isomorphic to Z@®- - - ®Z
(n times). These definitions agree with the ones given in Chapter 5.
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EXERCISES

In these exercises R is a ring with 1 and M is a left R-module.

1.

2.

S.

Prove that if A and B are sets of the same cardinality, then the free modules F(A) and
F(B) are isomorphic.

Assume R is commutative. Prove that R” = R™ if and only if n = m, i.e., two free
R-modules of finite rank are isomorphic if and only if they have the same rank. [Apply
Exercise 12 of Section 2 with I a maximal ideal of R. You may assume that if F is a field,
then F" = F™ if and only if n = m, i.e., two finite dimensional vector spaces over F
are isomorphic if and only if they have the same dimension — this will be proved later in
Section 11.1.]

. Show that the F[x]-modules in Exercises 18 and 19 of Section 1 are both cyclic.
. An R-module M is called a torsion module if for each m € M there is a nonzero element

r € R such that rm = 0, where r may depend on m (i.e., M = Tor(M) in the notation of
Exercise 8 of Section 1). Prove that every finite abelian group is a torsion Z-module. Give
an example of an infinite abelian group that is a torsion Z-module.

Let R be an integral domain. Prove that every finitely generated torsion R-module has a
nonzero annihilator i.e., there is a nonzero element r € R such that rm = Oforallm € M
— here r does not depend on m (the annihilator of a module was defined in Exercise 9 of
Section 1). Give an example of a torsion R-module whose annihilator is the zero ideal.

. Provethatif M is a finitely generated R-module that is generated by n elements then every

quotient of M may be generated by n (or fewer) elements. Deduce that quotients of cyclic
modules are cyclic.

7. Let N be a submodule of M. Prove thatif both M /N and N are finitely generated then so
isM.
8. Let S be the collection of sequences (ay, a2, a3, .. .) of integers ay, az, a3, ... where all

9

10.

11.

12.

13.

but finitely many of the a; are O (called the direct sum of infinitely many copies of Z).
Recall that S is a ring under componentwise addition and multiplication and S does not
have a multiplicative identity — cf. Exercise 20, Section 7.1. Prove that S is not finitely
generated as a module over itself.

An R-module M is called irreducible if M # 0 and if O and M are the only submodules
of M. Show that M is irreducible if and only if M 7# 0 and M is a cyclic module with any
nonzero element as generator. Determine all the irreducible Z-modules.

Assume R is commutative. Show that an R-module M is irreducible if and only if M is
isomorphic (as an R-module) to R/I where I is a maximal ideal of R. [By the previous
exercise, if M is irreducible there is a natural map R — M defined by r > rm, where m
is any fixed nonzero element of M.]

Show thatif M and M, are irreducible R-modules, then any nonzero R-module homomor-
phism from M; to M3 is an isomorphism. Deduce thatif M is irreducible then Endg (M) is
a division ring (this result is called Schur’s Lemma). [Consider the kermnel and the image.]
Let R be a commutative ring and let A, B and M be R-modules. Prove the following
isomorphisms of R-modules:

(@) Homg(A x B, M) = Homg (A, M) x Homg(B, M)

(b) Homg(M, A x B) = Homg(M, A) x Homg(M, B).

Let R be a commutative ring and let F be a free R-module of finite rank. Prove the
following isomorphism of R-modules: Homg(F, R) = F.
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14. Let R be a commutative ring and let F be the free R-module of rank n. Prove that

15.

The
16.

17.

18.

19.

21.

—

Sec.

Hompg(F, M) = M x - -- x M (n times). [Use Exercise 9 in Section 2 and Exercise 12.]

An element e € R is called a central idempotent if €2 = e ander = re forallr € R. If eis
a central idempotent in R, provethat M = eM @ (1—e)M. [Recall Exercise 14 in Section
1.]

next two exercises establish the Chinese Remainder Theorem for modules (cf. Section 7.6).

For any ideal I of R let IM be the submodule defined in Exercise 5 of Section 1. Let
Aj, ..., Ag be any ideals in the ring R. Prove that the map

M —> M/AIM x ---x M/AxM definedby m+—> (m+ A\M,...,m+ ArM)
is an R-module homomorphism with kernel AiM N A2M N - --N AgM.

In the notation of the preceding exercise, assume further that the ideals Ay, ..., Ay are
pairwise comaximal (i.e., A; + A; = R for all i # j). Prove that

M/(Ay--- A M= M/AIM x--- x M/AxM.
[See the proof of the Chinese Remainder Theorem for rings in Section 7.6.]
Let R be a Principal Ideal Domain and let M be an R-module that is annihilated by the

nonzero, proper ideal (@). Leta = p}' p3* - - - p;* be the unique factorization of a into
distinct prime powers in R. Let M; be the annihilator of pf"' in M, i.e., M; is the set

{me M| p?"m = 0} — called the p;-primary component of M. Prove that
M=M &M --- & M.

Show that if M is a finite abelian group of order a = p}" p3* - - - p;* then, considered as a

Z-module, M is annihilated by (a), the p;-primary component of M is the unique Sylow
pi-subgroup of M and M is isomorphic to the direct product of its Sylow subgroups.

Let I beanonempty index setandforeachi € I let M; be an R-module. Thedirect product
of the modules M; is defined to be their direct product as abelian groups (cf. Exercise 15
in Section 5.1) with the action of R componentwise multiplication. The direct sum of the
modules ¥; is defined to be the restricted direct product of the abelian groups M; (cf.
Exercise 17 in Section 5.1) with the action of R componentwise multiplication. In other
words, the direct sum of the M;’s is the subset of the direct product, [ |;; M:, which consists
of all elements [[;¢; m; such that only finitely many of the components m; are nonzero;
the action of R on the direct product or direct sum is given by r [[;c; mi = [1;¢; rmi (cf.
Appendix I for the definition of Cartesian products of infinitely many sets). The direct
sum will be denoted by ®;¢1 M;.
(a) Prove that the direct product of the M;’s is an R-module and the direct sum of the
M;’s is a submodule of their direct product.
(b) Show thatif R = Z, I = Z* and M; is the cyclic group of order i for each i, then the
direct sum of the M;’s is not isomorphic to their direct product. [Look at torsion.]

Let I be a nonempty index set and for each i € I let N; be a submodule of M. Prove that
the following are equivalent:
(i) the submodule of M generated by all the N;’s is isomorphic to the direct sum of the

N;’s

(i) if {i1, i2...., ik} is any finite subset of I then N;; N (N, +-- -+ N;,) =0

(iii) if {i1, 2, ..., ik} is any finite subsetof I then Nj +---+ Ny = N1 @ - - - ® Ni

(iv) for every element x of the submodule of M generated by the N;’s there are unique
elements a; € N; forall i € I such that all but a finite number of the a; are zero and
x is the (finite) sum of the a;.
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22.

23.
24

25.

26.

27.

Let R be a Principal Ideal Domain, let M be a torsion R-module (cf. Exercise 4) and let p

be a prime in R (do not assume M is finitely generated, hence it need not have a nonzero

annihilator — cf. Exercise 5). The p-primary component of M is the set of all elements

of M that are annihilated by some positive power of p.

(a) Prove that the p-primary component is a submodule. [See Exercise 13 in Section 1.]

(b) Prove that this definition of p-primary component agrees with the one given in Exer-
cise 18 when M has a nonzero annihilator.

(c) Prove that M is the (possibly infinite) direct sum of its p-primary components, as p
runs over all primes of R.

Show that any direct sum of free R-modules is free.

(An arbitrary direct product of free modules need not be free) For each positive integer i

let M; be the free Z-module Z, and let M be the direct product [];cz+ M; (cf. Exercise

20). Each element of M can be written uniquely in the form (a1, a2, a3, ...) witha; € Z

for all i. Let N be the submodule of M consisting of all such tuples with only finitely

many nonzero a;. Assume M is a free Z-module with basis B.

(a) Show that N is countable.

(b) Show that there is some countable subset 13 of B such that N is contained in the
submodule, Nq, generated by IB;. Show also that N; is countable.

(c) Let M = M/N;. Show that M is afree Z-module. Deduce that if X is any nonzero
element of M then there are only finitely many distinct positive integers k such that
x = km for some m € M (depending on k).

(d) Let S = {(b1, b2, b3, ...) | b; = %i! for all i}. Prove that S is uncountable. Deduce
that there is some s € S with s ¢ Nj.

(e) Show that the assumption M is free leads to a contradiction: By (d) we may choose
s € S with s ¢ Nj;. Show that for each positive integer k there is some m € M with
5 = km, contrary to (c). [Use the fact that N C Nj.]

In the construction of direct limits, Exercise 8 of Section 7.6, show that if all A; are R-
modules and the maps p;; are R-module homomorphisms, then the directlimit A = lim A;
may be given the structure of an R-module in a natural way such that the maps p; : A; &> A
are all R-module homomorphisms. Verify the corresponding universal property (part (€))
for R-module homomorphisms ¢; : A; = C commuting with the p;;.

Carry out the analysis of the preceding exercise corresponding to inverse limits to show
that an inverse limit of R-modules is an R-module satisfying the appropriate universal
property (cf. Exercise 10 of Section 7.6).

(Free modules over noncommutative rings need not have a unique rank) Let M be the
Z-module Z x Z x - - - of Exercise 24 and let R be its endomorphism ring, R = Endz(M)
(cf. Exercises 29 and 30 in Section 7.1). Define ¢;, ¢2 € R by

v1(a1,a2,a3,...) =(a1,a3,as,...)
v2(a1,a2,a3,...) = (az,a4, a6, ...)

(a) Prove that {¢], ¢} is a free basis of the left R-module R. [Define the maps y; and
¥ by Y1(ay,a2,-..) = (a1,0,a2,0,...) and Y2(ay,az,...) = (0,a1,0,a2,...).
Verify that ¢; i = 1, o192 = 0 = @291 and Y1¢1 + Yop2 = 1. Use these relations
to prove that ¢, ¢; are independent and generate R as a left R-module.]

(b) Use (a) to prove that R = R? and deduce that R = R" for alln € Z*.
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10.4 TENSOR PRODUCTS OF MODULES

In this section we study the tensor product of two modules M and N over a ring (not
necessarily commutative) containing 1. Formation of the tensor product is a general
construction that, loosely speaking, enables one to form another module in which one
can take “products” mn of elements m € M and n € N. The general construction
involves various left- and right- module actions, and it is instructive, by way of moti-
vation, to first consider an important special case: the question of “extending scalars”
or “changing the base.”

Suppose that the ring R is a subring of the ring S. Throughout this section, we
always assume that 1 = 1 (this ensures that S is a unital R-module).

If N is aleft S-module, then N can also be naturally considered as a left R-module
since the elements of R (being elements of S) act on N by assumption. The S-module
axioms for N include the relations

(s1+s)n=sin+sn and sy + ny) =sn; +sny (10.1)
foralls, 51, s2 € S and all n, ny, n, € N, and the relation
(s152)n = s1(spon) forall sp,s2 € S,andalln € N. (10.2)
A particular case of the latter relation is
(sr)n =s@n) forallse S,r e Randn € N. (10.2"

More generally, if f : R — S is aring homomorphism from R into S with f(1g) = 1g
(for example the injection mapif R is a subring of S as above) then it is easy to see that
N can be considered as an R-module with rn = f(r)n forr € R and n € N. In this
situation S can be considered as an extension of the ring R and the resulting R-module
is said to be obtained from N by restriction of scalars from S to R.

Suppose now that R is a subring of S and we try to reverse this, namely we start
with an R-module N and attempt to define an S-module structure on N that extends
the action of R on N to an action of S on N (hence “extending the scalars” from R
to S). In general this is impossible, even in the simplest situation: the ring R itself is
an R-module but is usually not an S-module for the larger ring S. For example, Z is
a Z-module but it cannot be made into a Q-module (if it could, then % o1 =z would
be an element of Z with z + z = 1, which is impossible). Although Z itself cannot be
made into a Q-module it is contained in a Q-module, namely Q itself. Put another way,
there is an injection (also called an embedding) of the Z-module Z into the Q-module Q
(and similarly the ring R can always be embedded as an R-submodule of the S-module
S). This raises the question of whether an arbitrary R-module N can be embedded as
an R-submodule of some S-module, or more generally, the question of what R-module
homomorphisms exist from N to S-modules. For example, suppose N is a nontrivial
finite abelian group, say N = Z/2Z., and consider possible Z-module homomorphisms
(i.e., abelian group homomorphisms) of N into some Q-module. A Q-module is just
a vector space over (Q and every nonzero element in a vector space over QQ has infinite
(additive) order. Since every element of N has finite order, every element of N must
map to 0 under such a homomorphism. In other words there are no nonzero Z-module
homomorphisms from this N to any Q-module, much less embeddings of N identifying
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N as a submodule of a Q-module. The two Z-modules Z and Z/2Z exhibit extremely
different behaviors when we try to “extend scalars” from Z to Q: the first module maps
injectively into some Q-module, the second always maps to 0 in a Q-module.

Wenow construct fora general R-module NV an S-module that is the “best possible”
target in which to try to embed N. We shall also see that this module determines all of
the possible R-module homomorphisms of N into S-modules, in particular determining
when N is contained in some S-module (cf. Corollary 9). In the case of R = Z and
S = Q this construction will give us QQ when applied to the module N = Z, and will give
us 0 when applied to the module N = Z/27Z (Examples 2 and 3 following Corollary 9).

If the R-module N were already an S-module then of course there is no difficulty
in “extending” the scalars from R to S, so we begin the construction by returning to
the basic module axioms in order to examine whether we can define “products” of the
form sn, fors € S and n € N. These axioms start with an abelian group N together
with a map from S x N to N, where the image of the pair (s, n) is denoted by sn. Itis
therefore natural to consider the free Z-module (i.e., , the free abelian group) on the set
S x N, i.e., the collection of all finite commuting sums of elements of the form (s;, n;)
wheres; € Sandn; € N. Thisis an abelian group where there are no relations between
any distinct pairs (s, n) and (s’, n’), i.e., no relations between the “formal products”
sn, and in this abelian group the original module N has been thoroughly distinguished
from the new “coefficients” from S. To satisfy the relations necessary for an S-module
structure imposed in equation (1) and the compatibility relation with the action of R on
N in (2'), we must take the quotient of this abelian group by the subgroup H generated
by all elements of the form

(s1 + 52, n) — (51, n) — (52, M),
(s, n1 +n2) — (s, np) — (s, nz), and (103)

(sr,n) — (s, rn),

for s, s1,s2 € S,n,n1,ny € N and r € R, where rn in the last element refers to the
R-module structure already defined on N.

The resulting quotient group is denoted by S ® g N (or just S ® N if R is clear from
the context) and is called the tensor product of S and N over R. If s ® n denotes the
coset containing (s, n) in S @g N then by definition of the quotient we have forced the
relations

G1+2)Qn=510n+s5 Qn,
s@(Mm+n)=s@n; + s @ny, and (10.4)

sr®®n=sQQrn.

The elements of S®g N are called tensors and can be written (non-uniquely in general)
as finite sums of “simple tensors” of the forms @ n withs € S,n € N.
We now show that the tensor product S @g N is naturally a left S-module under

the action defined by
S(Zs,- ®n,~) = Z(S&')@I'li- (10.5)

finite finite
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We first check this is well defined, i.e., independent of the representation of the
element of S @ N as a sum of simple tensors. Note first that if s’ is any element of S
then

('(s1+52),n) = (s"s1,n) — (52, 1) (= (s"s1+5"52, ) — (s's1, ) — (552, M),
(s's, n1 + ny) — (s's. ny) — (s's, ny), and

(s'(sr),n) — (s's,rn) (= ((s's)r,n) — (s's, rn))

each belongs to the set of generators in (3), so in particular each lies in the subgroup
H. This shows that multiplying the first entries of the generators in (3) on the left by s’
gives another element of H (in fact another generator). Since any element of H is a sum
of elements as in (3), it follows that for any element ) (s;, n;) in H also )_(s'si, n;)
lies in H. Suppose now that )_s; ® n; = )_s! ® n are two representations for the
same elementin S ®g N. Then ) _(si, n;) — ) (s}, n}) is an element of H, and by what
we have just seen, for any s € S also ) _(ss;, n;) — D _(ss, n;) is an element of H. But
this means that ) _ss; ® n; = )_ss! @ n} in S ®g N, so the expression in (5) is indeed
well defined.

It is now straightforward using the relations in (4) to check that the action defined
in (5) makes S ®x N into a left S-module. For example, on the simple tensor s; ® n;,

(s+5) (s ®n) = ((s+5")s) ®n; by definition (5)
= (ssi +5'si)) ®n;
=s5;®n +5's; @n; by the first relation in (4)

=s5(si ®n;)+5 (s; ®n;) by definition (5) .

The module S ®x N is called the (left) S-module obtained by extension of scalars
from the (left) R-module N.

There is a natural map ¢ : N — S ®z N defined by n — 1 ® n (i.e., first map
n € N to the element (1, n) in the free abelian group and then pass to the quotient
group). Since 1 @ rn = r ® n = r(1 ® n) by (4) and (5), it is easy to check that ¢ is
an R-module homomorphism from N to § ®g N. Since we have passed to a quotient
group, however, ¢ is not injective in general. Hence, while there is a natural R-module
homomorphism from the original left R-module N to the left S-module S ®g N, in
general S ®g N need not contain (an isomorphic copy of) N. On the other hand, the
relations in equation (3) were the minimal relations that we had to impose in order to
obtain an S-module, so it is reasonable to expect that the tensor product S ®g N is
the “best possible” S-module to serve as target for an R-module homomorphism from
N. The next theorem makes this more precise by showing that any other R-module
homomorphism from N factors through this one, and is referred to as the universal
property for the tensor product S @ N. The analogous result for the general tensor
product is given in Theorem 10.
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Theorem 8. Let R be a subring of S, let N be aleft R-moduleandlet: : N > S®z N
be the R-module homomorphism defined by ¢(n) = 1 ®n. Suppose that L is any left S-
module (hence also an R-module)and thatg : N — L is an R-module homomorphism
from N to L. Then there is a unique S-module homomorphism @ : S®g N — L such
that ¢ factors through @, i.e., ¢ = @ o and the diagram

@ ld’
L

commutes. Conversely, if @ : S ® N — L is an S-module homomorphism then
¢ = @ o is an R-module homomorphism from N to L.

Proof: Suppose ¢ : N — L is an R-module homomorphism to the S-module L.
By the universal property of free modules (Theorem 6 in Section 3) there is a Z-module
homomorphismfromthefree Z-module F onthe set Sx N to L thatsends each generator
(s, n) to s (n). Since ¢ is an R-module homomorphism, the generators of the subgroup
H in equation (3) all map to zero in L. Hence this Z-module homomorphism factors
through H, i.e., there is a well defined Z-module homomorphism @ from F/H =
S ®r N to L satisfying @ (s ® n) = s¢(n). Moreover, on simple tensors we have

SP(s@n) =s'(spn)) = (s's)pn) = O((s's) ®n) = O(s'(s @ n)).

for any s’ € S. Since @ is additive it follows that & is an S-module homomorphism,
which proves the existence statement of the theorem. The module S ® N is generated
as an S-module by elements of the form 1 ® n, so any S-module homomorphism is
uniquely determined by its values on these elements. Since @ (1®n) = ¢(n), it follows
that the S-module homomorphism @ is uniquely determined by ¢, which proves the
uniqueness statement of the theorem. The converse statement is immediate.

The universal property of S ®g N in Theorem 8 shows that R-module homomor-
phisms of N into S-modules arise from S-module homomorphisms from S ®¢ N. In
particular this determines when it is possible to map N injectively into some S-module:

Corollary 9. Let: : N — S ®g N be the R-module homomorphism in Theorem 8.
Then N/ ker ¢ is the unique largest quotient of N that canbe embeddedinany S-module.
Inparticular, N can be embedded as an R-submodule of some left S-module if and only
if tisinjective (in which case N is isomorphic to the R-submodule ¢ (V) of the S-module
S ®r N).

Proof: The quotient N / ker ¢ is mapped injectively (by ¢) into the S-module S®g N.
Suppose now that ¢ is an R-module homomorphism injecting the quotient N/ ker ¢
of N into an S-module L. Then, by Theorem 8, ker: is mapped to O by ¢, i.e.,
kert C ker¢y. Hence N/kerg is a quotient of N/ker: (namely, the quotient by
the submodule ker ¢/ ker ¢). It follows that N/ ker ¢ is the unique largest quotient of
N that can be embedded in any S-module. The last statement in the corollary follows
immediately.
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For any ring R and any left R-module N we have R®r N = N (so “extending scalars
from R to R” does not change the module). This follows by taking ¢ to be the identity
map from N toitself (and S = R) in Theorem 8: ¢ is then an isomorphism with inverse
isomorphism given by ¢. In particular, if A is any abelian group (i.e., a Z-module),
thenZ ®z A = A.

Let R = Z, S = Q and let A be a finite abelian group of order n. In this case the
Q-module Q ®z A obtained by extension of scalars from the Z-module A is 0. To see
this, observe first that in any tensor product | ® 0=1® 0+ 0) =1®0+ 1 ®O0, by
the second relation in (4), so

1®0=0.

Now, for any simple tensor ¢ ® a we can write the rational number g as (g/n)n. Then
since na = 0 in A by Lagrange’s Theorem, we have

q®a=(%-n)®a=%@(na)=(q/n)®o=(q/n)(1®0)=0.

It follows that Q ®z A = 0. In particular, the map ¢ : A — S ®p A is the zero map.
By Theorem 8, we see again that any homomorphism of a finite abelian group into a
rational vector space is the zero map. In particular, if A is nontrivial, then the original
Z-module A is not contained in the Q-module obtained by extension of scalars.
Extension of scalarsfor free modules: If N = R" is afree module ofrank n over R then
S®gr N = S" is a free module of rank n over S. We shall prove this shortly (Corollary
18) when we discuss tensor products of direct sums. For example, Q ®z Z" = Q".
In this case the module obtained by extension of scalars contains (an isomorphic copy
of) the original R-module N. For example, Q ®z Z" = Q" and Z" is a subgroup of
the abelian group Q.

Extension of scalars for vector spaces: As a special case of the previous example, let
F be a subfield of the field K and let V be an n-dimensional vector space over F (i.e.,
V = F"). Then K @f V = K" is a vector space over the larger field K of the same
dimension, and the original vector space V is contained in K ® r V as an F-vector
subspace.

Induced modules for finite groups: Let R be a commutative ring with 1, let G be a
finite group and let H be a subgroup of G. As in Section 7.2 we may form the group
ring RG and its subring RH. For any RH-module N define the induced module
RG ®grp N. In this way we obtain an RG-module for each RH-module N. We shall
study properties of induced modules and some of theirimportant applications to group
theory in Chapters 17 and 19.

The general tensor product construction follows along the same lines as the ex-
tension of scalars above, but before describing it we make two observations from this
special case. The first is that the construction of S ®z N as an abelian group involved
only the elements in equation (3), which in turn only required S to be a right R-module
and N to be a left R-module. In a similar way we shall construct an abelian group
M ®g N forany right R-module M and any left R-module N. The second observation
is that the S-module structure on S ®g N defined by equation (5) required only a left
S-module structure on S together with a “compatibility relation”

s'(sr) = (s's)r fors,s’ € S,r € R,
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between this left S-module structure and the right R-module structure on S (this was
needed in order to deduce that (5) was well defined). We first consider the general
construction of M ®x N as an abelian group, after which we shall return to the question
of when this abelian group can be given a module structure.

Suppose then that N is a left R-module and that M is a right R-module. The
quotient of the free Z-module on the set M x N by the subgroup generated by all
elements of the form

(ml +m2, n) - (mli n) - (m2, n)a
(m, ny + n2) — (m. n1) — (m, nz), and (10.6)

(mr, n) — (m, rn),

form,my,m; € M, n, n;,n2 € N andr € R is an abelian group, denoted by M ®x N,
orsimply M ® N if thering R is clear from the context, and is called the tensor product
of M and N over R. The elements of M ®g N are called tensors, and the coset, m @ n,
of (im, n) in M ®g N is called a simple tensor. We have the relations

(mi+m))@n=m ®n+m;Qn,
m® (n1+nz) =m @ n; +m @ ny, and (10.7)

mr@®n=mQrn.

Every tensor can be written (non-uniquely in general) as a finite sum of simple tensors.

Remark: We emphasize that care must be taken when working with tensors, since each
m ® n represents a coset in some quotient group, and so we may havem ® n = m’ @ n’
where m # m’ orn # n’. More generally, an element of M ® N may be expressible in
many different ways as a sum of simple tensors. In particular, care must be taken when
defining maps from M ®g N to another group or module, since a map from M ® N
which is described on the generators m @ n in terms of m and n is not well defined unless
it is shown to be independent of the particularchoice of m ® n as a coset representative.

Another point where care must be exercised is in reference to the element m ® n
when the modules M and N or the ring R are not clear from the context. The first two
examples of extension of scalars give an instance where M is a submodule of a larger
module M’, and for somem € M andn € N wehave m®n =0in M’ Qg N butm ®@n
is nonzeroin M ® g N. This is possible because the symbol “m @ n” represents different
cosets, hence possibly different elements, in the two tensor products. In particular, these
two examples show that M ®g N need not be a subgroup of M’ ®g N even when M
is a submodule of M’ (cf. also Exercise 2).

Mapping M x N tothe free Z-module on M x N and then passing to the quotient
defines amapt¢: M x N — M ®g N with t(m, n) = m @ n. This map is in general
not a group homomorphism, but it is additive in both m and n separately and satisfies
t(mr,n) = mr ® n = m ® rn = «(m, rn). Such maps are given a name:
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Definition. Let M be a right R-module, let N be a left R-module and let L be an
abelian group (written additively). Amap ¢ : M x N — L is called R-balanced or
middle linear with respect to R if

@(my + ma, n) = @(my, n) + @(mz, n)
o(m, ny + ny) = (m, ny) + ¢(m, ny)
@(m, rn) = ¢(mr, n)

forallm,m;,m, € M,n,ni,n, € N,andr € R.

With this terminology, it follows immediately from the relations in ( 7) that the map
t: M x N— M ®g N is R-balanced. The next theorem proves the extremely useful
universal property of the tensor product with respect to balanced maps.

Theorem 10. Suppose R is a ring with 1, M is a right R-module, and N is a left
R-module. Let M ®g N be the tensor product of M and N over R andlett : M x N —
M ®g N be the R-balanced map defined above.
1) If®: M®g N — L is any group homomorphism from M ®g N to an abelian
group L then the composite map ¢ = @ o« is an R-balanced map from M x N
to L.
(2) Conversely, suppose L is an abelian group and ¢ : M x N — L is any R-
balanced map. Then there is a unique group homomorphism @ : M®gN = L
such that ¢ factors through ¢, i.e., ¢ = @ o asin (1).
Equivalently, the correspondence ¢ <> ¢ in the commutative diagram

Mx N s, M®grN
N l¢
L
establishes a bijection

R-balanced maps group homomorphisms
¢o:MxN-—>L P MR R N-—>L ’

Proof: The proof of (1) is immediate from the properties of ¢ above. For (2), the
map ¢ defines a unique Z-module homomorphism ¢ from the free group on M x N to
L (Theorem 6 in Section 3) such that ¢(m, n) = ¢(m, n) € L. Since ¢ is R-balanced,
@ maps each of the elements in equation (6) to O; for example

@ ((mr,n) — (m, rn)) = ¢(mr,n) — o(m, rn) =0.

It follows that the kernel of ¢ contains the subgroup generated by these elements, hence
¢ induces a homomorphism @ on the quotient group M ®g N to L. By definition we
then have

@ (m @n) = ¢(m,n) = ¢(m,n),

i.e., ¢ = @ ot. The homomorphism @ is uniquely determined by this equation since
the elements m ® n generate M ®x N as an abelian group. This completes the proof.
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Theorem 10 is extremely useful in defining homomorphisms on M ®x N since it
replaces the often tedious check that maps defined on simple tensors m @ n are well
defined with a check that a related map defined on ordered pairs (m, n) is balanced.

The first consequence of the universal property in Theorem 10 is a characterization
of the tensor product M ®x N as an abelian group:

Corollary 11. Suppose D is an abelian group and ¢’ : M x N — D is an R-balanced
map such that

(i) the image of ¢’ generates D as an abelian group, and

(ii) every R-balanced map defined on M x N factors through ¢’ as in Theorem 10.

Then there is an isomorphism f : M ®g N = D of abelian groups with ¢’ = f o .

Proof: Since ' : M x N — D is a balanced map, the universal property in (2)
of Theorem 10 implies there is a (unique) homomorphism f : M @ N — D with
¢ = f ot Inparticular ' (m, n) = f(m ® n) foreverym € M, n € N. By the first
assumption on ¢/, these elements generate D as an abelian group, so f is a surjective
map. Now, the balanced map ¢ : M x N —> M ®g N together with the second
assumption on ¢’ implies there is a (unique) homomorphism g : D — M ®g N with
t=gol. Thenm @ n = (g o f)(m @ n). Since the simple tensors m @ n generate
M ®g N, it follows that g o f is the identity map on M ®g N and so f is injective,
hence an isomorphism. This establishes the corollary.

We now return to the question of giving the abelian group M ®g N a module
structure. As we observed in the special case of extending scalars from R to S for the
R-module N, the S-module structure on S ® g N required only a left S-module structure
on S together with the compatibility relation s’(sr) = (s's)r fors,s’ € Sandr € R.
In this special case this relation was simply a consequence of the associative law in
the ring S. To obtain an S-module structure on M ®g N more generally we impose a
similar structure on M:

Definition. Let R and S be any rings with 1. An abelian group M is called an (S, R)-
bimodule if M is aleft S-module, a right R-module, and s(mr) = (sm)r forall s € S,
r€e Randm e M.

Examples

(1) Anyring S is an (S, R)-bimodule for any subring R with 1 = 15 by the associativity
of the multiplication in S. More generally, if f : R — S is any ring homomorphism
with f(1g) = 1gs then S can be considered as a right R-module with the action
s - r = sf(r), and with respect to this action S becomes an (S, R)-bimodule.

(2) Let I be anideal (two-sided) in the ring R. Then the quotientring R/I is an (R/I, R)-
bimodule. Thisiseasytoseedirectly and is also a special caseof the previous example
(with respect to the canonical projection homomorphism R — R/I).

(3) Suppose that R is a commutative ring. Then a left (respectively, right) R-module M
can always be given the structure of a right (respectively, left) R-module by defining
mr = rm (respectively, rm = mr), forallm € M and r € R, and this makes M into
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an (R, R)-bimodule. Hence every module (right or left) over a commutative ring R
has at least one natural (R, R)-bimodule structure.

(4) Supposethat M is aleft S-module and R is a subring contained in the center of S (for
example, if S is commutative). Then in particular R is commutative so M can be given
aright R-module structure as in the previous example. Thenforany s € S, r € R and
m € M by definition of the right action of R we have

(sm)r = r(sm) = (rs)m = (srym = s(rm) = s(mr)

(note that we have used the fact that » commutes with s in the middle equality). Hence
M is an (S, R)-bimodule with respect to this definition of the right action of R.

Since the situation in Example 3 occurs so frequently, we give this bimodule struc-
ture a name:

Definition. Suppose M is a left (or right) R-module over the commutative ring R.
Then the (R, R)-bimodule structure on M defined by letting the left and right R-actions
coincide, i.e., mr = rm forallm € M andr € R, will be called the standard R-module
structure on M.

Suppose now that N is a left R-module and M is an (S, R)-bimodule. Then just as
in the example of extension of scalars the (S, R)-bimodule structure on M implies that

s(Zmi ®n,-) = Z(smi)®ni (10.8)
finite finite
gives a well defined action of S under which M ®g N is a left S-module. Note that
Theorem 10 may be used to give an alternate proof that (8) is well defined, replacing
the direct calculations on the relations defining the tensor product with the easier check
that a map is R-balanced, as follows. It is very easy to see that for each fixed s € §
the map (m,n) — sm @ n is an R-balanced map from M x N to M ®g N. By
Theorem 10 there is a well defined group homomorphism A, from M ®g N to itself
such that A;(m ® n) = sm @ n. Since the right side of (8) is then A;(}_m; ® n;),
the fact that A is well defined shows that this expression is indeed independent of
the representation of the tensor ) m; ® n; as a sum of simple tensors. Because A; is
additive, equation (8) holds.

By a completely parallel argument, if M is a right R-module and N is an (R, S)-
bimodule then the tensor product M @ N has the structure of a right S-module, where

Q-mi®nj)s =) m; @ (n;s).

Before giving some more examples of tensor products itis worthwhile to highlight
one frequently encountered special case of the previous discussion, namely the case
when M and N are two left modules over a commutative ring R and S = R (in some
works on tensor products this is the only case considered). Then the standard R-module
structure on M defined previously gives M the structure of an (R, R)-bimodule, so in
this case the tensor product M ®g N always has the structure of a left R-module.

The corresponding map: : M x N - M ®g N maps M x N into an R-module
and is additive in each factor. Since r(m @ n) = rm @ n = mr ® n = m @ rn it also
satisfies

ri(m,n) = t(rm, n) = t(m, rn).

Sec. 10.4  Tensor Products of Modules 367



Such maps are given a name:

Definition. Let R be acommutative ring with 1 and let M, N, and L be left R-modules.
Themap ¢ : M x N — L is called R-bilinear if it is R-linear in each factor, i.e., if

@(rimy + ramp, n) = rig(my, n) + r29(mz,n), and
@(m, riny + rny) = rip@m, ny) + rap(m, ny)

forallm,m;,m, € M,n,ny,n, € Nandry,r, € R.
With this terminology Theorem 10 gives

Corollary 12. Suppose R is a commutative ring. Let M and N be two left R-modules
and let M ®x N be the tensor product of M and N over R, where M is given the standard
R-module structure. Then M ®x N is a left R-module with

rm@n)=m)@n=mr)@n=mQ (rn),

andthemap:: M x N > M ®g N with ((m, n) = m @ n is an R-bilinear map. If L
is any left R-module then there is a bijection

R-bilinear maps R-module homomorphisms
¢:MxN-—>L d:MRN-—>L

where the correspondence between ¢ and @ is given by the commutative diagram

MxN—">M®rN

N

L

Proof: We have shown M ®g N is an R-module and that ¢ is bilinear. It remains
only to check that in the bijective correspondence in Theorem 10 the bilinear maps
correspond with the R-module homomorphisms. If ¢ : M x N — L is bilinear then it
is an R-balanced map, so the corresponding @ : M ®g N is a group homomorphism.
Moreover, on simple tensors @ ((rm) @ n) = ¢(rm,n) = ro(m,n) = rd(m Q n),
where the middle equality holds because ¢ is R-linear in the first variable. Since @ is
additive this extends to sums of simple tensors to show @ is an R-module homomor-
phism. Conversely, if @ is an R-module homomorphism it is an exercise to see that the
corresponding balanced map ¢ is bilinear.

Examples

(1) In any tensor product M @ g N wehave m @ 0 =m ® (0+0) = (m ®0) + n ® 0),
som ® 0= 0. Likewise 0 ®n = 0.
(2) Wehave Z/27 ®z Z./3Z = 0, since 3a = a fora € Z/2Z so that

a®b=3a@®b=a®3b=a®0=0

and every simple tensor is reduced to 0. In particular 1 ® 1 = 0. It follows that there
are no nonzero balanced (or bilinear) maps from Z/2Z x Z/3Z to any abelian group.

368 Chap. 10  Introduction to Module Theory



On the other hand, consider the tensor product Z/2Z.®z Z/2Z., which is generated
as an abelian group by the elements 0®0 =1®0=0®1 =0and 1 ® 1. In this case
1®1 # Osince, for example, the map Z/27Z x Z./27. — Z./2Z. defined by (a, b) > ab
is clearly nonzero and linear in both @ and b. Since 20 ® 1) =2® 1=0® 1 =0,
the element 1 ® 1 is of order 2. Hence Z /27 ®z Z/27. = Z./27Z.

(3) In general,
Z/mZ @z Z/nZ = Z[/dZ,

where d is the g.c.d. of the integers m and n. To see this, observe first that
a®@b=a@®@®-)=(@)®1=ab(1®1),

from which it follows that Z/mZ ®z Z/nZis a cyclic group with 1 ® 1 as generator.
Sincem(1®@1)=m®1=0® 1 =0and similarly n(1 ® 1) = 1 ® n = 0, we have
d(1®1) = 0, so the cyclic group has order dividing d. The map ¢ : Z/mZ x Z/nZ —
Z./dZ defined by ¢(a mod m, b mod n) = ab mod d is well defined since d divides
both m and n. Itisclearly Z-bilinear. The induced map ¢ : Z/mZ.®zZ/nZ — Z/dZ
from Corollary 12 maps 1 ® 1 to the element 1 € Z/dZ, which is an element of order
d. In particular Z/mZ ®z Z/nZ has order at least d. Hence 1 ® 1 is an element of
order d and @ gives an isomorphism Z/mZ ®z Z/nZ = Z./dZ.

4) In Q/Z ®z Q/Z a simple tensor has the form (a/bmodZ) ® (c/d mod Z) for some
rational numbers a/b and ¢/d. Then

(% modZ) ® (2 modZ) = d(% modZ) ® (d£ modZ)
a C a
= (E modZ) ® d(d— modZ) = (E modZ)®0=0

and so
Q/Z®z Q/Z = 0.

In a similar way, A ®z B = 0 for any divisible abelian group A and torsion abelian
group B (an abelian group in which every element has finite order). For example

Q®zQ/Z=0.

(5) The structure of a tensor product can vary considerably depending on the ring over
which the tensors are taken. For example Q ®g Q and Q ®z Q are isomorphic as left
@Q-modules (both are one dimensional vector spaces over (Q) — cf. the exercises. On
the other hand we shall see at the end of this section that C ®c C and C ®g C are
not isomorphic C-modules (the former is a 1-dimensional vector space over C and the
latter is 2-dimensional over C).

(6) General extension of scalars or change of base: Let f : R — § be aring homomor-
phism with f(1g) = 1s. Thens - r = sf(r) gives S the structure of a right R-module
with respect to which S is an (S, R)-bimodule. Then for any left R-module N, the
resulting tensor product § ®g N is a left S-module obtained by changing the base
from R to S. This gives a slight generalization of the notion of extension of scalars
(where R was a subring of S).

(7) Let f : R —> S be a ring homomorphism as in the preceding example. Then we
have S ®r R = S as left S-modules, as follows. The map ¢ : § x R — S defined
by (s,r) > sr (where sr = sf(r) by definition of the right R-action on S), is an
R-balanced map, as is easily checked. For example,

@(s1 + 52, 1) = (51 + 82)r = s1r + sor = @(s1, r) + ¢(s2,1)
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and
o(sr, v’y = (sr)r' =s@rr’) = g(s, rr)).

By Theorem 10 we have an associated group homomorphism @ : S ®g R — S with
P(s®r) =sr. Since (s’ (s ®r)) = P(s's@r) = s'sr = 5s'P(s ®r), it follows that
@ is also an S-module homomorphism. The map @’ : S - S ®g R withs > s®1is
an S-module homomorphism that is inverse to @ because ® o @'(s) = P(s R 1) = s
gives #P’ = 1, and

P oPsRr)=P'(sr)=sr@1=5®r

shows that @’ is the identity on simple tensors, hence ¢'® = 1.

(8) Let R be aring (not necessarily commutative), let 7 be a two sided ideal in R, and let N
be aleft R-module. Then as previously mentioned, R/ is an (R/I, R)-bimodule, so
the tensor product R/I ®g N is aleft R/I-module. This is an example of “extension
of scalars” with respect to the natural projection homomorphism R — R/I.

Define
IN=[Zain,' |a; € I, n; GN},

finite
which is easily seen to be a left R-submodule of N (cf. Exercise 5, Section 1). Then
(R/I) @ N= N/IN,

as left R-modules, as follows. The tensor product is generated as an abelian group by
the simple tensors (r modI) ® n = r(1 ® n) forr € Randn € N (viewing the R/I-
module tensor product as an R-module on which 7 acts trivially). Hence the elements
1 ® n generate (R/I) ®g N as an R/I-module. The map N — (R/I) ®g N defined
by n — 1 ® n is aleft R-module homomorphism and, by the previous observation,
is surjective. Under this map a;n; witha; € I and n; € N maps to 1 ® a;n; =
a; ®n; = 0, and so IN is contained in the kernel. This induces a surjective R-module
homomorphism f : N/IN — (R/I) ®¢ N with f(nmod7) = 1 ® n. We show f
is an isomorphism by exhibiting its inverse. The map (R/I) x N — N/IN defined
by mapping (r mod I, n) to (rn mod I N) is well defined and easily checked to be R-
balanced. It follows by Theorem 10 that there is an associated group homomorphism
g:(R/I)®N — N/IN with g((r modI) ® n) = rnmod I N. As usual, fg = 1 and
gf = 1,s0 f is abijection and (R/I) ®g N = N/IN, as claimed.

As an example, let R = Z with ideal I = mZ and let N be the Z-module Z/nZ.
Then IN = m(Z/nZ) = (mZ + nZ) /nZ = dZ/nZ where d is the g.c.d. of m and n.
Then N/IN = Z./dZ. and we recover the isomorphism Z/mZ ®z Z[nZ = 7. /dZ of
Example 3 above.

We now establish some of the basic properties of tensor products. Note the frequent
application of Theorem 10 to establish the existence of homomorphisms.

Theorem 13. (The “Tensor Product” of Two Homomorphisms) Let M, M’ be right
R-modules, let N, N’ be left R-modules, and suppose ¢ : M — M’ and ¢ : N -> N’
are R-module homomorphisms.
(1) There is a unique group homomorphism, denoted by ¢ ® ¥, mapping M ®g N
into M’ ®g N’ suchthat (¢ ® ¥ )(m ® n) = ¢(m) @ Y (n) forallm € M and
neN.
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(2) If M, M’ are also (S, R)-bimodules for some ring S and g is also an S-module
homomorphism, then ¢ ®y is ahomomorphism ofleft S-modules. In particular,
if R is commutative then ¢ ® ¥ is always an R-module homomorphism for the
standard R-module structures.

B Ifr: M - M'and p : NN -> N” are R-module homomorphisms then
A®Wo(@®Y)=Rop) @ (o).

Proof: The map (m, n) +— ¢(m) ® Y(n) from M x N to M’ ®g N’ is clearly
R-balanced, so (1) follows immediately from Theorem 10.

In (2) the definition of the (left) action of S on M together with the assumption that
¢ is an S-module homomorphism imply that on simple tensors

(@@ Y)s(m@n)) = (p @ Y)sm @ n) = p(sm) @ Y(n) = sp(m) @ ¥(n).

Since ¢ ® ¥ is additive, this extends to sums of simple tensors to show that ¢ ® ¥ is
an S-module homomorphism. This gives (2).
The uniqueness condition in Theorem 10 implies (3), which completes the proof.

The next result shows that we may write M ® N ® L, or more generally, an n-fold
tensor product M; @ M; ® - - - ® M,,, unambiguously whenever it is defined.

Theorem 14. (Associativity of the Tensor Product) Suppose M is aright R-module, N
is an (R, T)-bimodule, and L is a left T-module. Then there is a unique isomorphism

MO RN L=MEr(N®rL)

of abelian groups such that (m @ n) @l > m ® (n ® I). If M is an (S, R)-bimodule,
then this is an isomorphism of S-modules.

Proof: Note first that the (R, T)-bimodule structure on N makes M ®x N into a
right T-module and N ®7 L into a left R-module, so both sides of the isomorphism are
well defined. For each fixed ! € L, the mapping (m, n) > m ® (n @) is R-balanced,
so by Theorem 10 there is a homomorphism M @g N — M ®r (N ®¢ L) with
m®n > mQ (n®1I). This shows that the map from (M @gp N) x Lto M @ (N ®7 L)
given by (im @ n, 1) = m ® (n ® l) is well defined. Since it is easily seen to be T -
balanced, another application of Theorem 10 implies that it induces a homomorphism
MR RN L—>MORWNQrL)suchthat mOn Q~—> mn®l). Ina
similar way we can construct a homomorphism in the opposite direction that is inverse
to this one. This proves the group isomorphism.

Assume in addition M is an (S, R)-bimodule. Thenfors € S and ¢t € T we have

s((mn)t)=s(mMnt) =smnt = (smn)t = (s(m @n))t

so that M ®g N is an (S, T)-bimodule. Hence (M ®r N) ®r L is a left S-module.
Since N ®; L is a left R-module, also M ®@g (N ®; L) is a left S-module. The group
isomorphism just established is easily seen to be a homomorphism of left S-modules
by the same arguments used in previous proofs: it is additive and is S-linear on simple
tensors since s (M @n) @) = s(m @ n) @1 = (sm ® n) ® I maps to the element
sm@n®l =s({mQ (n®1l)). The proof is complete.
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Corollary 15. Suppose R is commutative and M, N, and L are left R-modules. Then
MAINQL=EMOI(INQ®L)
as R-modules for the standard R-module structureson M, N and L.

There is a natural extension of the notion of a bilinear map:

Definition. Let R be a commutative ring with 1 and let My, M, ..., M, and L be
R-modules with the standard R-module structures. Amap ¢ : M; X --- x M,, > Lis
called n-multilinear over R (or simply multilinear if n and R are clear from the context)
if it is an R-module homomorphism in each component when the other component
entries are kept constant, i.e., for each i

’ 7
oimy, ...,mi_1,rm; +r'm;, miyq, ..., my)
! !
=remy, ..., mi,...,mp) +romy,...,m;,...,my,)

for all m;, m; € M; and r,r’ € R. When n = 2 (respectively, 3) one says ¢ is bilinear
(respectively trilinear) rather than 2-multilinear (or 3-multilinear).

One may construct the n-fold tensor product M; @ M; ® - - - ® M, from first
principles and prove its analogous universal property with respect to multilinear maps
from M; x - -- x M, to L. By the previous theorem and corollary, however, an n-
fold tensor product may be obtained unambiguously by iterating the tensor product of
pairs of modules since any bracketing of M; ® - - - ® M,, into tensor products of pairs
gives an isomorphic R-module. The universal property of the tensor product of a pair
of modules in Theorem 10 and Corollary 12 then implies that multilinear maps factor
uniquely through the R-module M) ®- - - ® M,,, i.e., this tensor product is the universal
object with respect to multilinear functions:

Corollary 16. Let R be a commutative ring and let My, ..., M,, L be R-modules. Let
M, ® M; ®- - - ® M,, denote any bracketing of the tensor product of these modules and
let

tMix---xM,>MQ---QM,

be the map defined by ¢(my, ..., m,) =m; @ - - - @ m,,. Then
(1) forevery R-module homomorphism @ : M; ®---® M, — L themapg = Do
is n-multilinear from M; x - -- x M, to L, and
Q) ife : My x --- x M, — L is an n-multilinear map then there is a unique
R-module homomorphism @ : M; ® --- @ M,, - Lsuchthaty = @ o¢.
Hence there is a bijection

n-multilinear maps R-module homomorphisms
o: M x---xM, > L O M®--- M, > L

with respect to which the following diagram commutes:

Mx---an—L>M®---®Mn

S

L
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We have already seen examples where M; ®g N is not contained in M ®r N
even when M is an R-submodule of M. The next result shows in particular that (an
isomorphic copy of) M; ®g N is contained in M ®g N if M; is an R-module direct
summand of M.

Theorem 17. (Tensor Products of Direct Sums) Let M, M’ be right R-modules and let
N, N’ be left R-modules. Then there are unique group isomorphisms

MOMYQQPRN=EZ(MQRN)® (M ®gN)
MQr(N®N)=(M®rN)D(MQgN)

such that (m, m")®n > (m®n, m'®n) andm@(n, n’) > (mMAn, m@n’) respectively.
If M, M’ are also (S, R)-bimodules, then these are isomorphisms of left S-modules. In
particular, if R is commutative, these are isomorphisms of R-modules.

Proof: Themap (M@EM')xN — (MQgrN)B(M'®gN) defined by ((m, m’), n) —
(m ® n,m’ ® n) is well defined since m and m’ in M @ M’ are uniquely defined in
the direct sum. The map is clearly R-balanced, so induces a homomorphism f from
(M@®M)®Nto(M Q@ N)®(M' ®g N) with

f(m,m")®n) =(mn,m @n).

In the other direction, the R-balancedmaps M x N -> (M@®M')Qzr N and M’ x N —
(M®M')®g N givenby (m, n) — (m,0)®n and (m’, n) — (0, m") @n, respectively,
define homomorphisms from M @g N and M’ @z N to (M & M) ®g N. These in turn
give ahomomorphism g from the direct sum (M @z N)O(M' Qg N)to (MO M')Qr N
with

g((m@ny, m ®@ny)) = (m.0) @n; + (0, m) n,.

An easy check shows that f and g are inverse homomorphisms and are S-module
isomorphisms when M and M’ are (S, R)-bimodules. This completes the proof.

The previous theorem clearly extends by induction to any finite direct sum of R-
modules. The corresponding result is also true for arbitrary direct sums. For example

M ® (®ierNi) = @it (M Q N;),
where / is any index set (cf. the exercises). This result is referred to by saying that

tensor products commute with direct sums.

Corollary 18. (Extension of Scalars for Free Modules) The module obtained from the
free R-module N = R" by extension of scalars from R to S is the free S-module S”,
1.e.,

S ®r R "

as left S-modules.

Proof: This follows immediately from Theorem 17 and the isomorphism S®g R =
S proved in Example 7 previously.
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Corollary 19. Let R be a commutative ring and let M = R° and N = R’ be free

R-modules with bases m, ..., ms;and ny, ..., n,, respectively. Then M ®g N is a free
R-module of rank sz, with basism; ® nj,1 <i <sand1<j <tie,
R ®g R" = R*'.

Remark: More generally, the tensor product of two free modules of arbitrary rank over
a commutative ring is free (cf. the exercises).

Proof: This follows easily from Theorem 17 and the first example following Corol-
lary 9.

Proposition 20. Suppose R is a commutative ring and M, N are left R-modules,
considered with the standard R-module structures. Then there is a unique R-module
isomorphism

MRrNENQrM

mappingm @ nton @ m.

Proof: Themap M x N - N ® M defined by (m, n) — n ® m is R-balanced.
Hence it induces a unique homomorphism f from M@ Nto N ® M with f(m®n) =
n ® m. Similarly, we have a unique homomorphism g from N ® M to M ® N with
g(n®m) = m ®n giving theinverse of f, and both maps are easily seen to be R-module
isomorphisms.

Remark: When M = N it is not in general true thata ® b = b ® a fora, b € M. We
shall study “symmetric tensors” in Section 11.6.

We end this section by showing that the tensor product of R-algebras is again an
R-algebra.

Proposition 21. Let R be acommutative ring and let A and B be R-algebras. Then the
multiplication (a ® b)(a’ ® V') = aa’ ® bb' is well defined and makes A ®g B into an
R-algebra.

Proof: Note first that the definition of an R-algebra shows that

r@®b)=ra@®@b=ar@b=a@rb=a®@ br = (a®b)r

foreveryr € R,a € Aand b € B. Toshow that A® B isan R-algebra the maintask is,
asusual, showing that the specified multiplication is well defined. One way to proceed is
to use two applications of Corollary 16, as follows. Themapg : AxBx AxB - A®B
defined by f(a,b,a’,b’) = aa’ ® bb' is multilinear over R. For example,

fa,nby + rby,d', b)) = aa’ @ (nbi + rab))b’
=aa @ ribib’' + aa’ @ rpbyb’
=nrfla, b, d,b)+nrf(ab,d,b).
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By Corollary 16, there is a corresponding R-module homomorphism ¢ from A ® B ®
AQRBtoAQBwithd(a®b®a' ®b) =aa’ @ bb'. Viewing A®@ B® A® B as
(A ® B) ® (A ® B), we can apply Corollary 16 once more to obtain a well defined R-
bilinear mapping ¢’ from (A®B) x (A® B) to AQ B with¢'(a®b, a’®b’) = aa’ @bb'.
This shows that the multiplication is indeed well defined (and also that it satisfies the
distributive laws). It is now a simple matter (left to the exercises) to check that with
this multiplication A ® B is an R-algebra.

Example

The tensor product C ®g C is free of rank 4 as a module over R with basis given by
ag=1®1,e=1Q®i,e3=i® 1, andeq =i ®i (by Corollary 19). By Proposition 21,
this tensor product is also a (commutative) ring with e; = 1, and, for example,

E=>1®Ni®)=i’®i’=(-De-)=D-hHel=1

Then (e4 — 1)(e4 + 1) = 0, so C ®g C is not an integral domain.

The ring C®g C is an R-algebra and the left and right R-actions are the same: xr = rx
forevery r € Rand x € C ®g C. The ring C ®g C has a structure of a left C-module
because the first C is a (C, R)-bimodule. It also has a right C-module structure because
the second C is an (R, C)-bimodule. For example,

irag=Ii-(I)=0(-DR1=i®1l=e
and
aq-i=01®D)-i=19(1-)=1Qi =es.

This example also shows that even when the rings involved are commutative there may be
natural left and right module structures (over somering) that are not the same.

EXERCISES

Let R be aring with 1.

1. Let f : R — S be a ring homomorphism from the ring R to the ring S with f(1g) = 15s.
Verify the details that sr = sf(r) defines a right R-action on S under which S is an
(S, R)-bimodule.

2. Show thatthe element “2 ® 1” is 0 in Z ®z Z/2Z but is nonzero in 2Z ®z Z/2Z.

3. Showthat C®g C and C®c C are bothleft R-modules but are notisomorphic as R-modules.

4. Show that Q ®z Q and Q ®q Q are isomorphic left Q-modules. [Show they are both
1-dimensional vector spaces over Q.]

5. Let A be a finite abelian group of order  and let p* be the largest power of the prime p
dividing n. Prove that Z/p*Z ®z A is isomorphic to the Sylow p-subgroup of A.

6. If R is any integral domain with quotient field Q, prove that (Q/R)®g (Q/R) = 0.

7. If R is any integral domain with quotient field Q and N is a left R-module, prove that
every element of the tensor product Q ®g N can be written as a simple tensor of the form
(1/d) ® n for some nonzerod € R and some n € N.

8. Suppose R is an integral domain with quotient field Q and let N be any R-module. Let
U = R* be the set of nonzero elements in R and define U "1 N to be the set of equivalence

classes of ordered pairs of elements (u, n) with u € U and n € N under the equivalence
relation (u, n) ~ (/, n) if and only if 'n = un’ in N.
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10.

11.

12.

13.

14.

15.

16.

17.

(a) Prove that U~1N is an abelian group under the addition defined by (u1,n1) +
(uz, n2) = (u1u2, uzny + uyny). Prove that r(u, n) = (u, rn) defines an action of R
on U~ N making itinto an R-module. [This is an example of localization considered
in general in Section 4 of Chapter 15, cf. also Section 5 in Chapter 7.]

(b) Show that the map from Q x N to U ~IN defined by sending (a/b, n) to (b, an)
fora € R,b € U,n € N, is an R-balanced map, so induces a homomorphism f
from QO ®g N to U™!IN. Show that the map g from U~IN to Q ®g N defined by
g((u, n)) = (1/u) ®n is well defined and is an inverse homomorphismto f. Conclude
that 0 ®g N = U~1N as R-modules.

(c) Conclude from (b) that (1/d) ® n is 0 in Q ®g N if and only if rn = 0 for some
nonzeror € R.

(d) If A is an abelian group, show that Q ®z A = 0 if and only if A is a torsion abelian
group (i.e., every element of A has finite order).

. Suppose R is an integral domain with quotient field Q and let N be any R-module. Let

Q ®R N be the module obtained from N by extension of scalars from R to Q. Prove that
the kernel of the R-module homomorphism ¢ : N — Q ®g N is the torsion submodule of
N (cf. Exercise 8 in Section 1). [Use the previous exercise.]

Suppose R is commutative and N = R" is a free R-module of rank n with R-module basis

€l,...,en-

(a) For any nonzero R-module M show that every element of M ® N can be written
uniquely in the form } | m; ® e; wherem; € M. Deduce thatif };_, m; ®¢; =0
inM@®N thenm; =0fori=1,..., n.

(b) Show thatif ) _m; ® n; = 0in M ® N where the n; are merely assumed tobe R-
linearly independent then it is not necessarily true that all the m; are 0. [Consider
R=Z,n=1,M = 7Z/2Z, and the element 1 ® 2.]

Let {e;1, 2} be a basis of V = RR2. Show that the elemente; ® e; + €2 ® €1 in V RrV
cannot be written as a simple tensor v ® w for any v, w € R2.

Let V be a vector space over the field F and let v, v’ be nonzero elements of V. Prove that
v®v =1 ®vin V @ V if and only if v = av’ for some a € F.

Prove that the usual dot product of vectors defined by letting (a1, - .., a,) - (b1, ..., b,) be
aiby + - - - + a,by, is a bilinear map from R” x R” to R.

Let I be an arbitrary nonempty index set and for each i € I let N; be a left R-module. Let
M be aright R-module. Prove the group isomorphism: M ® (@;e1 Ni) = ®ic1 (M Q N;),
where the direct sum of an arbitrary collection of modules is defined in Exercise 20,
Section 3. [Use the same argument as for the direct sum of two modules, taking care to
note where the direct sum hypothesis is needed — cf. the next exercise.]

Show that tensor products do not commute with direct products in general. [Consider

the extension of scalars from Z to @ of the direct product of the modules M; = Z/2'Z,

i=12,...]

Suppose R is commutative and let I and J be ideals of R, so R/I and R/J are naturally

R-modules.

(a) Prove that every element of R/I ® g R/J can be written as a simple tensor of the form
(1modI) ® (r mod J).

(b) Prove that there is an R-module isomorphism R/I ®g R/J = R/(I + J) mapping
(rmodI)® (¥ mod J) torr’ mod (I + J).

Let] = (2, x) betheideal generatedby 2 and x inthering R = Z[x]. TheringZ/2Z = R/I

is naturally an R-module annihilated by both 2 and x.
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18.

19.

20.

21.

22,

23.
. Prove that the extension of scalars from Z to the Gaussian integers Z[i] of the ring R is

25.

26.

(a) Show that the map ¢ : I x I — Z/2Z defined by
ola +aix +---+anx", bp+b1x +-- -+ bypx™) = %bl mod 2

is R-bilinear.
(b) Show that there is an R-module homomorphism from I g I — Z/2Z mapping

p(x) ® g(x) to %O)q'(O) where g’ denotes the usual polynomial derivative of g.

(c) Showthat2® x #x®2in I Qg I.

Suppose [ is a principal ideal in the integral domain R. Prove that the R-module I ®g I
has no nonzero torsion elements (i.e., rm = QO with 0 # r € R and m € I ®g I implies
that m = 0).

Let I = (2, x) be the ideal generated by 2 and x in the ring R = Z[x] as in Exercise 17.
Show that the nonzero element 2 ® x — x ® 2in I ®g I is a torsion element. Show in
fact that 2 ® x — x ® 2 is annihilated by both 2 and x and that the submodule of 7 ®g 1
generated by 2 ® x — x ® 2 is isomorphic to R/1.

Let I = (2, x) be the ideal generated by 2 and x in the ring R = Z[x]. Show that the
element2®2 + x ® x in I ®g I is not a simple tensor, i.e., cannot be written as a ® b for
somea, b € 1.

Suppose R is commutative and let I and J be ideals of R.

(a) Show there is a surjective R-module homomorphism from I ® g J to the product ideal
IJ mapping i ® j to the element ij.

(b) Give an example to show that the map in (a) need not be injective (cf. Exercise 17).

Suppose that M is a left and a right R-module such that rm = mr for all r € R and
m € M. Show that the elements r;r; and rarp act the same on M for every r,r2 € R.
(This explains why the assumption that R is commutative in the definition of an R-algebra
is a fairly natural one.)

Verify the details that the multiplication in Proposition 19 makes A®pg B into an R-algebra.

isomorphic to C as aring: Z[i] ®z R = C as rings.

Let R be a subring of the commutative ring S and let x be an indeterminate over S. Prove
that S[x] and S ®g R[x] are isomorphic as S-algebras.

Let S be acommutative ring containing R (with 15 = 1g) and let xy, ..., x, be indepen-
dent indeterminates over the ring S. Show that for every ideal I in the polynomial ring
Rlxy,...,x,]that SQg (R[x1, ..., xn1/1) = S[x1, ..., x4]/IS[x1, ..., x,] as S-algebras.

The next exercise shows the ring C ®g C introduced at the end of this section is isomorphic
to C x C. One may also prove this via Exercise 26 and Proposition 16 in Section 9.5, since

Cz=
27.

R[x)/ %+ 1). The ring C x C is also discussed in Exercise 23 of Section 1.

(a) Write down a formula for the multiplication of two elementsa-1+b-e;+c-e3+d-e4
anda’-1+b -e; +c'-e3+d - e4in the example A = C ®g C following Proposition
21 (where 1 = 1 ® 1 is the identity of A).

(b) Lete; = (1®1+i®i)ande; = J(1®1-i®i). Showthateie; = 0,€1+€, = 1,and
ef = ¢j for j = 1,2 (€1 and €3 are called orthogonal idempotents in A). Deduce that
A is isomorphic as aring to the direct product of two principal ideals: A = Ae; x A€z
(cf. Exercise 1, Section 7.6).

(c) Prove thatthemap ¢ : C x C — C x Cby ¢(z1, 22) = (2122, 21Z2), Where 7 denotes
the complex conjugate of z3, is an R-bilinear map.
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(d) Let @ be the R-module homomorphism from A to C x C obtained from ¢ in (c).
Show that @ (¢;) = (0, 1) and ®(e2) = (1, 0). Show also that @ is C-linear, where
the action of C is on the left tensor factor in A and on both factors in C x C. Deduce
that @ is surjective. Show that @ is a C-algebra isomorphism.

10.5 EXACT SEQUENCES—PROJECTIVE, INJECTIVE, AND
FLAT MODULES

One of the fundamental results for studying the structure of an algebraic object B (e.g.,
a group, a ring, or a module) is the First Isomorphism Theorem, which relates the
subobjects of B (the normal subgroups, the ideals, or the submodules, respectively)
with the possible homomorphic images of B. We have already seen many examples
applying this theorem to understand the structure of B from an understanding of its
“smaller” constituents—for example in analyzing the structure of the dihedral group
Dg by determining its center and the resulting quotient by the center.

In most of these examples we began first with a given B and then determined some
of its basic properties by constructing a homomorphism ¢ (often given implicitly by
the specification of ker ¢ C B) and examining both ker ¢ and the resulting quotient
B/ ker ¢. We now consider in some greater detail the reverse situation, namely whether
we may first specify the “smaller constituents.” More precisely, we consider whether,
given two modules A and C, there exists a module B containing (an isomorphic copy
of) A such that the resulting quotient module B/ A is isomorphic to C—in which case
B is said to be an extension of C by A. It is thennatural to ask how many such B exist
for a given A and C, and the extent to which properties of B are determined by the
corresponding properties of A and C. There are, of course, analogous problems in the
contexts of groups and rings. This is the extension problem first discussed (for groups)
in Section 3.4; in this section we shall be primarily concerned with left modules over
a ring R, making note where necessary of the modifications required for some other
structures, notably noncommutative groups. As in the previous section, throughout this
section all rings contain a 1.

We first introduce a very convenient notation. To say that A is isomorphic to a
submodule of B, is to say that there is an injective homomorphism ¢ : A — B (so
then A = ¥ (A) C B). To say that C is isomorphic to the resulting quotient is to say
that there is a surjective homomorphism ¢ : B — C with ker ¢ = ¥(A). In particular
this gives us a pair of homomorphisms:

abBSC
with image Y = ker ¢. A pair of homomorphisms with this property is given a name:

Definition.

(1) The pair of homomorphisms X —» Y LN Z is said to be exact (at Y) if
imagea = ker .

(2) Asequence:-- —> X, | > X,, > X,,1 — ---ofhomomorphismsis said to be
an exact sequence if it is exact at every X, between a pair of homomorphisms.
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With this terminology, the pair of homomorphisms A % BS C above is exact at B.
We can also use this terminology to express the fact that for these maps y is injective

and ¢ is surjective:

Proposition 22. Let A, B and C be R-modules over some ring R. Then
(1) The sequence 0 — A —w> B is exact (at A) if and only if ¥ is injective.
(2) The sequence B 5 € — Ois exact(at C) if and only if ¢ is surjective.

Proof: The (uniquely defined) homomorphism 0 — A has image O in A- This will
be the kernel of ¢ if and only if ¥ is injective. Similarly, the kernel of the (uniquely
defined) zero homomorphism C — 0 is all of C, which is the image of ¢ if and only if
@ is surjective.

Corollary 23. The sequence 0 — A % B % C - 0is exact if and only if ¢ is
injective, ¢ is surjective, and image y = ker ¢, i.e., B is an extension of C by A.

Definition. The exact sequence 0 — A ¥ B %5 C — 0is called a short exact
sequence.

In terms of this notation, the extension problem can be stated succinctly as follows:
given modules A and C, determine all the short exact sequences

0—>4-5B%5Cc—o0 (10.9)
We shall see below that the exact sequence notation is also extremely convenient for
analyzing the extent to which properties of A and C determine the corresponding prop-
erties of B. If A, B and C are groups written multiplicatively, the sequence (9) will be

written
v

1—-A—->B-5C—1 (10.9)
where 1 denotes the wivial group. Both Proposition 22 and Corollary 23 are valid with
the obvious notational changes. _

Notethatany exact sequence can be written as a succession of short exact sequences

since to say X —» Y LN Z is exact at Y is the same as saying that the sequence
0 — a(X) > Y — Y/ker B — O is a short exact sequence.

Examples

(1) Given modules A and C we can always form their direct sum B = A @ C and the
sequence

0>AS>A0C5C—>0
where t(a) = (a, 0) and 7(a, ¢) = c is a short exact sequence. In particular, it follows
that there always exists at least one extension of C by A.
(2) As a special case of the previous example, consider the two Z-modules A = Z and
C=2Z/nZ:
0— Z-% Z®Z/nZ) 2> Z2/nZ — 0,
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giving one extension of Z/nZ by Z.
Another extension of Z/nZ by Z is given by the short exact sequence

0>25232/mZ -0

where n denotes the map x + nx given by multiplication by n, and 7 denotes the
natural projection. Note that the modules in the middle of the previous two exact
sequences are not isomorphic even though the respective “A” and “C” terms are
isomorphic. Thus there are (at least) two “essentially different” or “inequivalent”
ways of extending Z/nZ by Z.

@3) If ¢ : B - C is any homomorphism we may form an exact sequence:

O—)kergo—t) B-YS imagegp — 0

where ¢ is the inclusion map. In particular, if ¢ is surjective, the sequence ¢ : B - C
may be extended to a short exact sequence with A = ker ¢.

(4) One particularly important instance ofthe preceding exampleis when M is an R-module
and S is a set of generators for M. Let F(S) be the free R-module on S. Then

0— K-> F©S)>M-—0

is the short exact sequence where ¢ is the unique R-module homomorphism which is
the identity on S (cf. Theorem 6) and K = ker ¢.
More generally, when M is any group (possibly non-abelian) the above short exact

sequence (with 1’s atthe ends, if M is written multiplicatively) describes a presentation
of M, where K is the normal subgroup of F(S) generated by the relations defining M
(cf. Section 6.3).

(5) Two “inequivalent” extensions G of the Klein 4-group by the cyclic group Z> of order
two are

l—)Zz—l>D8—¢>Zz><Zz—>l,and

l—»Zz—L>Q8—¢)sz22—>l,

where in each case « maps Z; injectively into the center of G (recall that both Dg and

Qg have centers of order two), and g is the natural projection of G onto G/Z(G).
Two other inequivalent extensions G of the Klein 4-group by Z2 occur when G

is either of the abelian groups Z; x Z; x Z; or Z; x Z4 for appropriate maps ¢ and ¢.

Examples 2 and 5 above show that, for a fixed A and C, in general there may be
several extensions of C by A. To distinguish different extensions we define the notion
of a homomorphism (and isomorphism) between two exact sequences. Recall first that
adiagram involving various homomorphisms is said to commute if any compositions of
homomorphisms with the same starting and ending points are equal, i.e., the composite
map defined by following a path of homomorphisms in the diagram depends only on
the starting and ending points and not on the choice of the path taken.
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Definition. Let0 > A —> B —> C —» 0and0 - A" > B’ - C’ — 0 be two short
exact sequences of modules.
(1) A homomorphism of short exact sequences is a triple ¢, 8, y of module homo-
morphisms such that the following diagram commutes:

00— A — B > C — 0
N
0 > A’ — B’ > ' —— 0

The homomorphism is an isomorphism of short exact sequencesif «, B, y are all
isomorphisms, in which case the extensions B and B’ are said to be isomorphic
extensions.

(2) The two exact sequences are called equivalent if A = A’, C = C’, and there is
an isomorphism between them as in (1) that is the identity maps on A and C
(i.e., « and y are the identity). In this case the corresponding extensions B and
B’ are said to be equivalent extensions.

If B and B’ are isomorphic extensions then in particular B and B’ are isomorphic
as R-modules, but more is true: there is an R-module isomorphism between B and
B’ that restricts to an isomorphism from A to A’ and induces an isomorphism on the
quotients C and C’. For a given A and C the condition that two extensions B and B’
of C by A are equivalent is stronger still: there must exist an R-module isomorphism
between B and B’ that restricts to the identity map on A and induces the identity map
on C. The notion of isomorphic extensions measures how many different extensions of
C by A there are, allowing for C and A to be changed by an isomorphism. The notion
of equivalent extensions measures how many different extensions of C by A there are
when A and C are rigidly fixed.

Homomorphisms and isomorphisms between short exact sequences of multiplica-
tive groups (9')-are defined similarly.

It is an easy exercise to see that the composition of homomorphisms of short exact
sequences is also a homomorphism. Likewise, if the triple ¢, 8, y is an isomorphism
(or equivalence) then @~!, 8=, y~! is an isomorphism (equivalence, respectively) in
the reverse direction. It follows that “isomorphism” (or equivalence) is an equivalence
relation on any set of short exact sequences.

Examples

(1) Let m and n be integers greater than 1. Assume n divides m and let k = m/n. Define
a map from the exact sequence of Z-modules in Example 2 of the preceding set of
examples:

0—— 2z 225 7z —ZIZ57Z/mZ —>0

L L l

0 — Z/kZ —— Z/mZ —"— Z/nZ —> 0

where « and B are the natural projections, y is the identity map, ¢ maps a modk to
na mod m, and 7’ is the natural projection of Z/ mZ onto its quotient (Z/ mZ) /(nZ/ mZ)
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(which is isomorphic to Z/nZ). One easily checks that this is a homomorphism of
short exact sequences.

If again0 — Z 5 25 Z/nZ — 0is the short exact sequence of Z-modules defined
previously, map each module to itself by x > —x. This triple of homomorphisms
gives an isomorphism of the exact sequence with itself. This isomorphism is not an
equivalence of sequences since it is not the identity on the first Z.

The short exact sequences in Examples 1 and 2 following Corollary 23 are not
isomorphic—the extension modules are not isomorphic Z-modules (abelian groups).
Likewise the two extensions, Dg and Qg, in Example 5 of the same set are not iso-
morphic (hence not equivalent), even though the two end terms “A” and “C” are the
same for both sequences.

Consider the maps

0 —» 222 Y 722072/22 —*— 7/22 — 0

lid lﬂ lid
0 —— 2272 Y 2220222 —— 222 — 0

where Y maps Z /2Zin jectively into the first component of the direct sum and ¢ projects
the direct sum onto its second component. Also ' embeds Z/2Z into the second
component of the direct sum and ¢’ projects the direct sum onto its first component.
If B maps the direct sum Z/2Z & Z/2Z to itself by interchanging the two factors,
then this diagram is seen to commute, hence giving an equivalence of the two exact
sequences that is not the identity isomorphism.

(5) Weexhibit two isomorphic but inequivalent Z-module extensions. For i = 1, 2 define

382

0— 222 - /420222 %> 2)22.8 227 —> 0

where ¢ : 1 — (2, 0) in both sequences, ¢; is defined by ¢1(amod4, bmod2) =
(amod?2, bmod2), and ¢;(a mod4, bmod2) = (bmod 2, a mod 2). It is easy to see
that the resulting two sequences are both short exact sequences.

An evident isomorphism between these two exact sequences is provided by the
triple of maps id, id, y, where y : Z/2Z @ Z/2Z — Z/27Z & Z/2Z is the map
y((c, d)) = (d, c) that interchanges the two direct factors.

We now check that these two isomorphic sequences are not equivalent, as fol-
lows. Since ¢;(0, 1) = (0, 1), any equivalence, id, g, id, from the first sequence to
the second must map (0, 1) € Z/4Z & Z/2Zto either (1, 0) or (3, 0) in Z/4Z & Z/27Z.,
since these are the two possible elements mapping to (0, 1) by ¢,. This is impossible,
however, since the isomorphism g cannot send an element of order 2 to an element of
order 4.

Put another way, equivalences involving the same extension module B are au-
tomorphisms of B that restrict to the identity on both y/(A) and B/y/(A). Any such
automorphism of B = Z/4Z & Z/2Z must fix the coset (0, 1) + y(A) since this
is the unique nonidentity coset containing elements of order 2. Thus maps which
send this coset to different elements in C give inequivalent extensions. In particular,
there is yet a third inequivalent extension involving the same modules A = Z/2Z,
B =27/42.® Z/27Z and C = Z/2Z & Z/27Z, that maps the coset (0, 1) 4+ ¢ (A) to the
element (1, 1) € Z/2Z & Z./27Z.

By similar reasoning there are three inequivalent but isomorphic group extensions
of Z; x Z3 by Z, with B = Dg (cf. the exercises).
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The homomorphisms «, B, ¥y in a homomorphism of short exact sequences are not
independent. The next result gives some relations among these three homomorphisms.

Proposition 24. (The Short Five Lemma) Let «, B, y be a homomorphism of short
exact sequences

0 > A — B > C — 0
I
0 > A’ > B’ > C' > 0

(1) If @ and y are injective then so is 8.

(2) If @ and y are surjective then sois 8.

(3) If @ and y are isomorphisms then so is B8 (and then the two sequences are
isomorphic).

Remark: These results hold also for short exact sequences of (possibly non-abelian)
groups (as the proof demonstrates).

Proof: We shall prove (1), leaving the proof of (2) as an exercise (and (3) follows
immediately from (1) and (2)). Suppose then that o and y are injective and suppose
b e Bwithf(b) =0.Lety : A— Band ¢ : B— C denote the homomorphisms in
the first short exact sequence. Since S(b) = 0, it follows in particular that the image
of B(b) in the quotient C’ is also 0. By the commutativity of the diagram this implies
that y (¢(b)) = 0, and since y is assumed injective, we obtain ¢(b) = 0, i.e., b is
in the kernel of ¢. By the exactness of the first sequence, this means that b is in the
image of ¥, i.e., b = Y (a) for some a € A. Then, again by the commutativity of
the diagram, the image of a(a) in B’ is the same as S({(a)) = B(b) = 0. But & and
the map from A’ to B’ are injective by assumption, and it follows that a = 0. Finally,
b = Y(a) = ¥ (0) = 0 and we see that 8 is indeed injective.

Wehavealready seen thatthere is always at least one extension of amodule C by A,
namely the direct sum B = A @ C. In this case the module B contains a submodule C’
isomorphic to C (namely C' = 0@ C) as well as the submodule A, and this submodule
complement to A “splits” B into a direct sum. In the case of groups the existence of
a subgroup complement C’ to a normal subgroup in B implies that B is a semidirect
product (cf. Section 5 in Chapter 5). The fact that B is a direct sum in the context
of modules is a reflection of the fact that the underlying group structure in this case is
abelian; for abelian groups semidirect products are direct products. In either case the
corresponding short exact sequence is said to “split™:

Definition.

(1) Let Rbearingandlet0 - A Y B % C — 0be a short exact sequence of
R-modules. The sequence is said to be split if there is an R-module complement
to ¥(A) in B. In this case, up to isomorphism, B = A & C (more precisely,
B = ¢/ (A)® C’ for some submodule C’, and C’ is mapped isomorphically onto
Cby ¢: o(C)Y=EC).
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@If1 > A % B % C - 1is a short exact sequence of groups, then the
sequence is said to be split if there is a subgroup complement to 1 (A) in B. In
this case, up to isomorphism, B = A x C (more precisely, B = y(A) x C’ for
some subgroup C’, and C is mapped isomorphically onto C by ¢: ¢(C’") = C).

In either case the extension B is said to be a split extension of C by A.

The question of whether an extension splits is the question of the existence of a
complement to ¥ (A) in B isomorphic (by ¢) to C, so the notion of a split extension
may equivalently be phrased in the language of homomorphisms:

Proposition 25. The short exact sequence 0 —> A % B % C - 0of R-modules is
split if and only if there is an R-module homomorphism p : C — B such that ¢ o

is the identity map on C. Similarly, the short exact sequence 1 — A “SBSC1
of groups is split if and only if there is a group homomorphism x : C — B such that
¢ o p is the identity map on C.

Proof: This follows directly from the definitions: if . is given define C' = u(C) C
B and if C' is given define . = qp‘l :C=C'CB.

Definition. With notation as in Proposition 25, any set map i : C — B such that
¢ o i = id is called a section of ¢. If i is a homomorphism as in Proposition 25 then
u is called a splitting homomorphism for the sequence.

Note that a section of ¢ is nothing more than a choice of coset representatives in B
for the quotient B/ kergp = C. A section is a (splitting) homomorphism if this set of
coset representatives forms a submodule (respectively, subgroup) in B, in which case
this submodule (respectively, subgroup) gives a complement to ¥ (A) in B.

Examples

(1) The split short exact sequence 0 - A - A®C 5 C > 0has the evident splitting
homomorphism p(c) = (0, ¢).

(2) The extension0 > Z - Z &® (Z/nZ) 4 Z/nZ — 0, of Z/nZ by Z is split (with
splitting homomorphism p mapping Z/nZ isomorphically onto the second factor of
the direct sum). On the other hand, the exact sequence of Z-modules 0 — Z 5z35
Z/nZ — 0 is not split since there is no nonzero homomorphism of Z/nZ into Z.

(3) Neither Dg nor Qg is a split extension of Z, x Z; by Z; because in neither group is
there a subgroup complement to the center (Section 2.5 gives the subgroup structures
of these groups).

(4) The group Dg is a split extension of Z; by Z4, i.e., there is a split short exact sequence

1—>Z4—L>Dg—">22—>l.
namely,
l——»(r)—‘—)Dg-i)(E)—>l,

using our usual set of generators for Dg. Here tisthe inclusion map and 7 : r2s® > §

is the projection onto the quotient Dg/(r) = Z;. The splitting homomorphism p

b
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maps (s ) isomorphically onto the complement (s ) for (r) in Dg. Equivalently, Dg
is the semidirect product of the normal subgroup (r) (isomorphic to Z4) with (s)
(isomorphic to Z3).

On the other hand, while Qg is also an extension of Z; by Z4 (for example,
(i) = Z4 has quotient isomorphic to Z3), Qg is not a split extension of Z by Z4: no
cyclic subgroup of Qg of order 4 has a complement in QOs.

Section 5.5 contains many more examples of split extensions of groups.

Proposition 25 shows that an extension B of C by A is asplit extension if and only
if there is a splitting homomorphism g of the projectionmap ¢ : B — C from B to the
quotient C. The next proposition shows in particular that for modules this is equivalent
to the existence of a splitting homomorphism for ¢ at the other end of the sequence.

Proposition 26. Let0 —> A % B % C - 0be a short exact sequence of modules

(respectively, 1 > A % B % C - 1 ashort exact sequence of groups). Then B =
Y (A) @ C’ for some submodule C’ of B with ¢(C’) = C (respectively, B = ¥ (A) x C’
for some subgroup C’ of B with ¢(C") = C) if and only if there is a homomorphism
A : B — A such that A o ¢ is the identity map on A.

Proof: This is similar to the proof of Proposition 25. If A is given, define C’' =
ker A C B and if C’ is given define A : B = ¢/(A) @ C’ - A by A((Y(a), ¢') = a.
Note that in this case C’ = ker A is normal in B, so that C' is a normal complement to
¥ (A) in B, which in turn implies that B is the direct sum of 1y (A) and C’ (cf. Theorem
9 of Section 5.4).

Proposition 26 shows that for general group extensions, the existence of a splitting
homomorphism A on the left end of the sequence is stronger than the condition that
the extension splits: in this case the extension group is a direct product, and not just
a semidirect product. The fact that these two notions are equivalent in the context of
modules is again a reflection of the abelian nature of the underlying groups, where
semidirect products are always direct products.

Modules and Homg(D, _ )
Let R be aring with 1 and suppose the R-module M is an extension of N by L, with

0—>L—W)M—¢>N—>O

the corresponding short exact sequence of R-modules. It is natural to ask whether
properties for L and N imply related properties for the extension M. The first situation
we shall consider is whether an R-module homomorphism from some fixed R-module
D toeither L or N implies there is also an R-module homomorphism from D to M.
The question of obtaining a homomorphism from D to M given a homomorphism
from D to L iseasilydisposed of: if f € Homg(D, L) is an R-module homomorphism
from D to L then the composite f = ¢ o f is an R-module homomorphism from D to
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M. The relation between these maps can be indicated pictorially by the commutative
diagram

LY u
Put another way, composition with i induces a map
¥’ : Homg(D, L) — Homg(D, M)
frofl=vyof.

Recall that, by Proposition 2, Homg (D, L) and Homg(D, M) are abelian groups.

Proposition 27. Let D, L and M be R-modules and let ¢ : L — M be an R-module
homomorphism. Then the map

Y’ : Homg(D, L) — Homg(D, M)
fref=vof

is a homomorphism of abelian groups. If ¢ is injective, then ¢ is also injective, i.e.,
if 0— L —¢> M is exact,

then 0 — Homg(D, L) i) Homg (D, M) is also exact.

Proof: The fact that ¢’ is a homomorphism is immediate. If i is injective, then
distinct homomorphisms f and g from D into L give distinct homomorphisms ¥ o f
and ¢ o g from D into M, which is to say that ¢ is also injective.

While obtaining homomorphisms into M from homomorphisms into the submodule
L is straightforward, the situation for homomorphisms into the quotient N is much less
evident. More precisely, given an R-module homomorphism f : D — N the question
is whether there exists an R-module homomorphism F : D — M that extends or lifts
f to M, i.e., that makes the following diagram commute:

¥
N

Asbefore, composition with the homomorphism ¢ induces a homomorphism of abelian
groups

¢’ : Homg(D, M) —> Homg(D, N)
F+—— F =¢oF.
In terms of ¢, the homomorphism f to N lifts to a homomorphism to M if and only if
f isin theimage of ¢’ (namely, f is the image of the lift F).
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In general it may not be possible to lift a homomorphism f from D to N to a
homomorphism from D to M. For example, consider the nonsplit exact sequence

02325 Z/2Z — 0 from the previous set of examples. Let D = Z/27Z and let
f be the identity map from D into N. Any homomorphism F of D into M = Z must
map D to 0 (since Z has no elements of order 2), hence w o F maps D to 0 in N, and
in particular, 7w o F # f. Phrased in terms of the map ¢’, this shows that

if M-S N—0 isexac,

then Homg(D, M) -5 Hom r(D, N) —> 0 is not necessarily exact.

These results relating the homomorphisms into L and N to the homomorphisms
into M can be neatly summarized as part of the following theorem.

Theorem 28. Let D, L, M, and N be R-modules. If

O—)L—w> M5 NSO is exact,

then the associated sequence

0 — Homg(D, L) % Homg(D, M) % Homg(D, N) is exact. (10.10)

A homomorphism f : D — N lifts to a homomorphism F : D — M if and only if
f € Homg (D, N)is inthe image of ¢’. In general ¢’ : Homg (D, M) - Homg(D, N)
need not be surjective; the map ¢’ is surjective if and only if every homomorphism from
D to N lifts to a homomorphism from D to M, in which case the sequence (10) can be
extended to a short exact sequence.

The sequence (10) is exact for all R-modules D if and only if the sequence

O—)Li’)M—w)N is exact.

Proof: The only item in the first statement that has not already been proved is the
exactness of (10) at Homg (D, M), i.e., ker¢’ = imagey’. Suppose F : D - M
is an element of Homg (D, M) lying in the kernel of ¢’, i.e., with g o F = 0 as
homomorphisms from D to N. If d € D is any element of D, this implies that
¢(F(d)) = 0and F(d) € ker ¢. By theexactness of the sequence defining the extension
M we have ker ¢ = image V¥, so there is some element! € L with F(d) = ¥ (I). Since
¥ is injective, the element / is unique, so this gives a well defined map F' : D — L
given by F'(d) = L It is an easy check to verify that F’ is a homomorphism, i.e.,
F’' € Homg(D, L). Since ¥ o F'(d) = ¥ () = F(d), we have F = y/'(F’) which
shows that F is in the image of Y, proving that ker ¢’ C imagey’. Conversely,
if F is in the image of ¢’ then F = ¢'(F’) for some F' € Homg(D, L) and so
¢(F(d)) = ¢(Y(F'(d))) for any d € D. Since ker ¢ = image y we have p o ¢y = 0,
and it follows that ¢(F(d)) = O forany d € D, i.e., ¢'(F) = 0. Hence F is in the
kernel of ¢’, proving the reverse containment: image y/ € ker ¢’.

For the last statement in the theorem, note first that the surjectivity of ¢ was not
required for the proof that (10) is exact, so the “if” portion of the statement has already
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beenproved. Forthe converse, suppose that the sequence (10) is exact for all R-modules
D. In general, Homg (R, X) = X for any left R-module X, the isomorphism being
given by mapping a homomorphism to its value on the element 1 € R (cf. Exercise

10(b)). Taking D = R in (10), the exactness of the sequence 0 — L i’) M5 N
follows easily.

By Theorem 28, the sequence

0 —> Homg(D, L) %> Homg(D, M) %> Homg(D, N) —> 0 (10.11)

is in general not a short exact sequence since the homomorphism ¢’ need not be sur-
jective. The question of whether this sequence is exact precisely measures the extent
to which the homomorphisms from D into M are uniquely determined by pairs of ho-
momorphisms from D into L and D into N. More precisely, this sequence is exact if
and only if there is a bijection F < (g, f) between homomorphisms F : D - M and
pairs of homomorphisms g : D — L and f : D — N given by F|yq) = ¥'(g) and
f=¢'(F).

One situation in which the sequence (11) is exact occurs when the original sequence
0—> L > M —> N — Ois asplit exact sequence, i.e., when M = L & N. In this
case the sequence (11) is also a split exact sequence, as the first part of the following
proposition shows.

Proposition 29. Let D, L and N be R-modules. Then
(1) Homg(D, L & N) = Homg(D, L) & Homg(D, N), and
(2) Homg(L & N, D) = Homg(L, D) & Homg(N, D).

Proof: Letm; : LON — L be the natural projection from L @ N to L and similarly
let 7, be the natural projection to N. If f € Homg(D, L & N) then the compositions
my o f and m, o f give elements in Homg(D, L) and Homg(D, N), respectively.
This defines a map from Homg(D, L & N) to Homg (D, L) & Homg(D, N) which
is easily seen to be a homomorphism. Conversely, given f; € Homg(D, L) and
f> € Homg(D, N), define the map f € Homg(D, L & N) by f(d) = (f1(d), f2(d)).
This defines amap from Homg (D, L)®Homg (D, N)to Homg(D, L@ N) thatis easily
checked to be a homomorphism inverse to the map above, proving the isomorphism in
(1). The proof of (2) is similar and is left as an exercise.

The results in Proposition 29 extend immediately by induction to any finite direct
sum of R-modules. These results are referred to by saying that Hom commutes with
finite direct sums in either variable (compare to Theorem 17 for a corresponding result
for tensor products). For infinite direct sums the situation is more complicated. Part
(1) remains true if L @ N is replaced by an arbitrary direct sum and the direct sum on
the right hand side is replaced by a direct product (Exercise 13 shows that the direct
product is necessary). Part (2) remains true if the direct sums on both sides are replaced
by direct products.

This proposition shows that if the sequence

0—L-LM-5N—0
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is a split short exact sequence of R-modules, then

0 —> Homg(D, L) ~%> Homg(D, M) -*> Homg(D, N) —> 0
is also a split short exact sequence of abelian groups for every R-module D. Ex-

ercise 14 shows that a converse holds: if 0 - Homg(D, L) f) Homg (D, M) £’>

Homg(D, N) — O is exact for every R-module D then0 — L ip) M5 N> 0is
a split short exact sequence (which then implies that if the original Hom sequence is
exact for every D, then in fact it is split exact for every D).

Proposition 29 identifies a situation in which the sequence (11) is exact in terms
of the modules L, M, and N. The next result adopts a slightly different perspective,
characterizing instead the modules D having the property that the sequence (10) in
Theorem 28 can always be extended to a short exact sequence:

Proposition 30. Let P be an R-module. Then the following are equivalent:
(1) For any R-modules L, M, and N, if

0—>L—w)M—¢>N—>O

is a short exact sequence, then

0 —> Homg(P, L) ~> Homg(P, M) > Homg(P, N) —> 0

is also a short exact sequence.

(2) Forany R-modules M and N, if M 25 N—>0is exact, thenevery R-module
homomorphism from P into N lifts to an R-module homomorphism into M,
i.e., given f € Homg(P, N) there is a lift F € Homg(P, M) making the
following diagram commute:

F.’ l f
Ml N 0
(3) If P isaquotient of the R-module M then P is isomorphic to a direct summand
of M, i.e., every short exact sequence 0 > L —- M — P — 0 splits.
(4) P is adirect summand of a free R-module.

Proof: The equivalence of (1) and (2) is a restatement of a result in Theorem 28.

Suppose now that (2) is satisfied, and let 0 — L % M5 P s Obeexact. By (2), the
identity map from P to P lifts to a homomorphism x making the following diagram
commute:

P
’f// lid
MZ 4. p 0

Then ¢ o u = 1, so u is a splitting homomorphism for the sequence, which proves (3).
Every module P is the quotient of a free module (for example, the free module on the
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set of elements in P), sothere is always an exact sequence 0 — kergp — F AP0
where F is a free R-module (cf. Example 4 following Corollary 23). If (3) is satisfied,
then this sequence splits, so F is isomorphic to the direct sum of ker ¢ and P, which
proves (4).

Finally, to prove (4) implies (2), suppose that P is a direct summand of a free R-
module on some set S, say F(S) = P & K, and that we are given a homomorphism f
from P to N asin (2). Let = denote the natural projection from F(S) to P, sothat fom
is a homomorphism from F(S) to N. For any s € S define n; = f o7(s) € N and let
m, € M be any element of M with ¢(m;) = n, (which exists because ¢ is surjective).
By the universal property for free modules (Theorem 6 of Section 3), there is a unique
R-module homomorphism F’ from F(S) to M with F'(s) = m,. The diagram is the
following:

FS)=P&®K
//l”
/
/
F'7 P
/
/ lf
Id
M YN >0

By definition of the homomorphism F’ we have goF’(s) = ¢(ms) = ns = fom(s),
from which it follows that ¢ o F' = f o & on F(S), i.e., the diagram above is com-
mutative. Now define amap F : P - M by F(d) = F'((d,0)). Since F is the
composite of the injection P — F(S) with the homomorphism F, it follows that F is
an R-module homomorphism. Then

poF(d)=¢oF((d0)=fon((d0)=f@)
ie.,po F = f, so the diagram

i
M——N——>0

commutes, which proves that (4) implies (2) and completes the proof.

Definition. An R-module P is called projective if it satisfies any of the equivalent
conditions of Proposition 30.

The third statement in Proposition 30 can be rephrased as saying that any module
M that projects onto P has (an isomorphic copy of) P as a direct summand, which
explains the terminology.

The following result is immediate from Proposition 30 (and its proof):

Corollary 31. Free modules are projective. A finitely generated module is projective
if and only if it is a direct summand of a finitely generated free module. Every module

is a quotient of a projective module.
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If D is fixed, then given any R-module X we have an associated abelian group
Homg (D, X). Further, an R-module homomorphism « : X — Y induces an abelian
group homomorphism &’ : Homg (D, X) — Homg(D, Y), defined by ¢’(f) = a o f.
Put another way, the map Homg(D, _ ) is a covariant functor from the category of
R-modules to the category of abelian groups (cf. Appendix II). Theorem 28 shows that
applying this functor to the terms in the exact sequence

0L LM N—0

produces an exact sequence

0 — Homg(D, L) % Homg(D, M) % Homg(D, N).

This is referred to by saying that Homg (D, _ ) is a left exact functor. By Proposition
30, the functor Homg(D, _ ) is exact, i.e., always takes short exact sequences to short
exact sequences, if and only if D is projective. We summarize this as

Corollary 32. If D is an R-module, then the functor Homg (D, _) from the category
of R-modules to the category of abelian groups is left exact. It is exact if and only if D
is a projective R-module.

Note that if Homg (D, _ ) takes short exact sequences to short exact sequences,
then it takes exact sequences of any length to exact sequences since any exact sequence
can be broken up into a succession of short exact sequences.

As we have seen, the functor Homgz (D, _ ) is in general not exact on the right.
Measuring the extent to which functors such as Homg (D, _ ) fail to be exact leads to
the notions of “homological algebra,” considered in Chapter 17.

Examples

(1) Weshall see in Section 11.1 thatif R = F is a field then every F-module is projective
(although we only prove this for finitely generated modules).
(2) By Corollary 31, Z is a projective Z-module. This can be seen directly as follows:

suppose f is amap from Z to N and M % N - Oisexact. The homomorphism f is
uniquely determined by the valuen = f(1). Then f can be lifted to a homomorphism
F : Z — M by first defining F(1) = m, where m is any element in M mapped to n
by ¢, and then extending F to all of Z by additivity.

By the first statement in Proposition 30, since Z is projective, if

v

0L 5SMEH NSO

is an exact sequence of Z-modules, then

0 —> Homgz(Z, L) %> Homz(Z, M) > Homz(Z, N) —> 0

is also an exact sequence. This can also be seen directly using the isomorphism
Homz(Z, M) = M of abelian groups, which shows that the two exact sequences
above are essentially the same.

(3) Free Z-modules have no nonzero elements of finite order so no nonzero finite abelian
group can be isomorphic to a submodule of a free module. By Corollary 31 it follows
that no nonzero finite abelian group is a projective Z-module.
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(4) As a particular case of the preceding example, we see that for n > 2 the Z-module
Z/nZ is not projective. By Theorem 28 it must be possible to find a short exact
sequence which after applying the functor Homz(Z/ nZ, _ ) is no longer exact on the
right. One such sequence is the exact sequence of Example 2 following Corollary 23:

0—Z-572-5 Z/nZ — 0,

forn > 2. Note first that Homz(Z/nZ, Z) = 0 since there are no nonzero Z-module
homomorphisms from Z/nZ to Z. 1t is also easy to see that Homgz(Z/nZ, Z/nZ) =
Z/nZ, as follows. Every homomorphism f is uniquely determined by f(1) = a €
Z/nZ, and given any a € Z/nZ there is a unique homomorphism f, with f;(1) = a;
the map f, > a is easily checked to be an isomorphism from Homgz(Z/nZ, Z/nZ)
to Z/nZ.

Applying Homz(Z/nZ, _ ) to the short exact sequence above thus gives the
sequence

0-— 05075 2Z/mZ —0

which is not exact at its only nonzero term.

(5) Since Q/Z is a torsion Z-module it is not a submodule of a free Z-module, hence is
not projective. Note also that the exact sequence 0 > Z — Q 3 Q/Z — 0does not
split since QQ contains no submodule isomorphic to Q/Z.

(6) The Z-module Q is not projective (cf. the exercises).

(7) Weshall see in Chapter 12 that a finitely generated Z-module is projective if and only
if itis free.

(8) Let R be the commutative ring Z/2Z x Z/2Z under componentwise addition and
multiplication. If P; and P, are the principal ideals generated by (1, 0) and (0, 1)
respectively then R = P; @ P», hence both Py and P, are projective R-modules by
Proposition 30. Neither P; nor P; is free, since any free module has order a multiple
of four.

(9) The direct sum of two projective modules is again projective (cf. Exercise 3).

(10) We shall seein Part VI thatif F is any field and n € Z* thenthering R = M,,(F) of all
n x n matrices with entries from F has the property that every R-module is projective.
We shall also see that if G is a finite group of order n and n # 0 in the field F then the
groupring FG also has the property that every module is projective.

Injective Modules and Homg(__, D)

If0— L l) M —£5 N —> 0is a short exact sequence of R-modules then, instead
of considering maps from an R-module D into L or N and the extent to which these
determine maps from D into M, we can consider the “dual” question of maps from
L or N to D. In this case, it is easy to dispose of the situation of a map from N to
D: an R-module map from N to D immediately gives a map from M to D simply by
composing with @. It is easy to check that this defines an injective homomorphism of
abelian groups

¢’ : Homg(N, D) — Homg(M, D)
fr—f'=fog
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or, put another way,

if M5 N0 is exact,

then 0 — Homg(N, D) —i) Homg (M, D) is exact.

(Note that the associated maps on the homomorphism groups are in the reverse direction
from the original maps.)

On the other hand, given an R-module homomorphism f from L to D it may not
be possible to extend f to a map F from M to D, i.e., given f it may not be possible
to find a map F making the following diagram commute:

L——M

For example, consider the exact sequence 0 — Z Yz 4 Z[2Z — 0 of
Z-modules, where ¥ is multiplication by 2 and ¢ is the natural projection. Take
D=27Z/27Z and let f : Z — Z/2Z be reduction modulo 2 on the first Z in the se-
quence. There is only one nonzero homomorphism F from the second Z in the se-
quence to Z/2Z (namely, reduction modulo 2), but this F does not lift the map f since
Foy(Z)=FQ2Z)=0,s0o0F oy # f.

Composition with ¥ induces an abelian group homomorphism ¥’ fromHomg (M, D)
to Homg(L, D), and in terms of the map v, the homomorphism f € Homg(L, D)
can be lifted to a homomorphism from M to D if and only if f is in the image of .
The example above shows that

if 0—>L—LM is exact,

then Homg(M, D) i) Homg(L, D) —> 0 is not necessarily exact.

We can summarize these results in the following dual version of Theorem 28:

Theorem 33. Let D, L, M, and N be R-modules. If

0—>L—£>M—w>N—>0 is exact,

then the associated sequence

0 - Homg (N, D) 2; Homg(M, D) E) Homg(L, D) is exact. (10.12)

A homomorphism f : L — D lifts to a homomorphism F : M — D if and only if
f € Homg (L, D)isintheimage of {'. Ingeneral y' : Homg (M, D) — Homg(L, D)
need not be surjective; the map ¥’ is surjective if and only if every homomorphism from
L to D lifts to a homomorphism from M to D, in which case the sequence (12) can be
extended to a short exact sequence.

The sequence (12) is exact for all R-modules D if and only if the sequence

L—w>M—w> N — 0 isexact.
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Proof: The only item remaining to be proved in the first statement is the exactness
of (12) at Homg (M, D). The proof of this statement is very similar to the proof of
the corresponding result in Theorem 28 and is left as an exercise. Note also that the
injectivity of ¢ is not required, which proves the “if” portion of the final statement of
the theorem.

Suppose now that the sequence (12) is exact for all R-modules D. We first show
that 9 : M — N is a surjection. Take D = N/o(M). If ;; : N > N/p(M) is
the natural projection homomorphism, then ; o ¢(M) = 0 by definition of ;. Since
1 o ¢ = ¢'(r1), this means that the element 77; € Homg(N, N /¢(M)) is mapped to 0
by ¢’. Since ¢’ is assumed to be injective for all modules D, this means r; is the zero
map, i.e., N = ¢(M) and so ¢ is a surjection. We next show that ¢ o y = 0, which
will imply that image 1 C ker ¢. For this we take D = N and observe that the identity
map idy on N is contained in Homg (N, N), hence ¢’(idy) € Homg(M, N). Then the
exactness of (12) for D = N implies that ¢’ (idy) € ker y’, so ¢’ (¢’ (idy)) = 0. Then
idyoyop=0,i.e., ¥ op =0, as claimed. Finally, we show that ker ¢ C image 1.
Let D = M/yY(L) and let m, : M — M/y (L) be the natural projection. Then
Y’ (7r2) = 0 since 7, (¥ (L)) = 0 by definition of ;. The exactness of (12) for this D
then implies that 77, is in the image of ¢, say m, = ¢'(f) for some homomorphism
f € Homg(N, M/y:(L)),i.e., 12 = f o ¢. If m € ker ¢ then my(m) = f(p(m)) =0,
which means that m € /(L) since m is just the projection from M into the quotient
M/ (L). Hence ker ¢ C image v, completing the proof.

By Theorem 33, the sequence

0 —> Homg(N, D) %> Homg(M, D) > Homg(L, D) —> 0

is in general not a short exact sequence since 1’ need not be surjective, and the question
of whether this sequence is exact precisely measures the extent to which homomor-
phisms from M to D are uniquely determined by pairs of homomorphisms from L and
N to D.

The second statement in Proposition 29 shows that this sequence is exact when the
original exact sequence0 > L - M — N — Ois a split exact sequence. In fact in

this case the sequence 0 —> Homg (N, D) % Homg(M, D) —) Homg(L, D) — Ois
also a split exact sequence of abelian groups forevery R-module D. Exercise 14 shows

that a converse holds: if 0 > Homg(N, D) f» Homg (M, D) ﬂ Homg(L, D) > 0

is exact for every R-module D then 0 — L IMENS 0 is a split short exact
sequence (which then implies that if the Hom sequence is exact for every D, then in
fact it is split exact for every D).

There is alsoa dual version of the first three parts of Proposition 30, which describes
the R-modules D having the property that the sequence (12) in Theorem 33 can always
be extended to a short exact sequence:

Proposition 34. Let O be an R-module. Then the following are equivalent:
(1) For any R-modules L, M, and N, if

0—L-5 M5 N—0
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is a short exact sequence, then

0 —s Homg(V, ) ~%> Homg(M, Q) %> Homg(L, Q) —> 0

is also a short exact sequence.

(2) For any R-modules L and M, if 0 > L —w—> M is exact, then every R-module
homomorphism from L into Q lifts to an R-module homomorphism of M into
0, ie., given f € Homg(L, Q) there is a lift F € Homg(M, Q) making the
following diagram commute:

0 > L M
fl ,°F
0"

(3) If Q is a submodule of the R-module M then Q is a direct summand of M, i.e.,
every short exact sequence 0 > Q - M — N — O splits.

Proof: The equivalence of (1) and (2) is part of Theorem 33. Suppose now that (2)

is satisfiedand let0 — Q X M5 N> Obeexact. Taking L = Q and f the identity
map from Q to itself, it follows by (2) that there is a homomorphism F : M — Q with
F oy = 1, so F is a splitting homomorphism for the sequence, which proves (3). The
proof that (3) implies (2) is outlined in the exercises.

Definition. An R-module Q is called injective if it satisfies any of the equivalent
conditions of Proposition 34.

The third statement in Proposition 34 can be rephrased as saying that any module
M into which Q injects has (an isomorphic copy of) Q as a direct summand, which
explains the terminology.

If D is fixed, then given any R-module X we have an associated abelian group
Homg (X, D). Further, an R-module homomorphism « : X — Y induces an abelian
group homomorphism ¢’ : Homg (Y, D) — Homg(X, D), defined by o/(f) = f o «,
that “reverses” the direction of the arrow. Put another way, the map Homg(D, _ ) isa
contravariant functor from the category of R-modules to the category of abelian groups
(cf. Appendix II). Theorem 33 shows that applying this functor to the terms in the exact

sequence

0—L-Y5M5N—0

produces an exact sequence

0 — Homg(N, D) % Homz(M, D) > Homg(L, D).

This is referred to by saying that Homgz(__, D) is a left exact (contravariant) functor.
Note that the functor Homz(__, D) and the functor Homz(D, ) considered earlier
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are both left exact; the former reverses the directions of the maps in the original short
exact sequence, the latter maintains the directions of the maps.

By Proposition 34, the functor Homg (__, D) is exact, i.e., always takes short exact
sequences to short exact sequences (and hence exact sequences of any length to exact
sequences), if and only if D is injective. We summarize this in the following proposition,
which is dual to the covariant result of Corollary 32.

Corollary 35. If D is an R-module, then the functor Homg(__, D) from the category
of R-modules to the category of abelian groups is left exact. It is exact if and only if D
is an injective R-module.

We have seen that an R-module is projective if and only if it is a direct summand
of a free R-module. Providing such a simple characterization of injective R-modules
is not so easy. The next result gives a criterion for Q to be an injective R-module (a
result due to Baer, who introduced the notion of injective modules around 1940), and
using it we can give a characterization of injective modules when R = Z (or, more
generally, when R is a P1.D.). Recall that a Z-module A (i.e., an abelian group, written
additively) is said to be divisible if A = nA for all nonzero integers n. For example,
both Q and QQ/Z are divisible (cf. Exercises 18 and 19 in Section 2.4 and Exercise 15
in Section 3.1).

Proposition 36. Let Q bean R-module.

(1) (Baer’s Criterion) The module Q is injective if and only ifforevery left ideal /
of R any R-modulehomomorphismg : I — Q canbeextendedtoan R-module
homomorphism G : R — Q.

(2) If Ris a PLD. then Q is injective if and only if r Q = Q for every nonzero
r € R. In particular, a Z-module is injective if and only if it is divisible. When
R is a P1.D., quotient modules of injective R-modules are again injective.

Proof: If Q is injective and g : I — Q is an R-module homomorphism from the
nonzero ideal I of R into Q, then g can be extended to an R-module homomorphism
from R into Q by Proposition 34(2) applied to the exact sequence 0 — I — R, which
proves the “only if” portion of (1). Suppose conversely that every homomorphism
g : I —> Q can be lifted to a homomorphism G : R — . To show that Q is
injective we must show that if 0 - L — M isexactand f : L — Q is an R-
module homomorphism then there is a lift F : M — Q extending f. If S is the
collection (f’, L’) of lifts f' : L' — Q of f to a submodule L’ of M containing L,
then the ordering (f', L) < (f”,L")if L’ € L” and f”" = f’ on L’ partially orders
S. Since S # 0, by Zorn’s Lemma there is a maximal element (F, M’) in S. The map
F : M — Qisalift of f and it suffices to show that M’ = M. Suppose that there is
some element m € M not containedin M’ andletI = {r € R | rm € M'}. Itiseasy to
check that I is a leftidealin R, and the map g : I — Q defined by g(x) = F(xm)is an
R-module homomorphism from I to Q. By hypothesis, thereis alift G : R - Q of g.
Consider the submodule M’ + Rm of M, and define the map F’' : M’ + Rm — Q by
F'(m'+rm) = Fm')+ G@r). f mi 4+ rim = my +rpmthen (r; — ro)m =my, —my
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shows that r; — r, € I, so that
G(r1 —r2) =g —r2) = F((n — rp)m) = F(mz —my),

and so F(m;) + G(r1) = F(my) + G(r2). Hence F’ is well defined and it is then
immediate that F’ is an R-module homomorphism extending f to M’ + Rm. This
contradicts the maximality of M’, so that M’ = M, which completes the proof of (1).

To prove (2), suppose R is a PI1.D. Any nonzero ideal I of R is of the form I = (r)
for some nonzero element r of R. An R-module homomorphism f : I — Q is
completely determined by the image f(r) = g in Q. This homomorphism can be
extended to a homomorphism F : R — Q if and only if there is an element ¢’ in Q
with F (1) = ¢’ satisfying ¢ = f(r) = F(r) = rq’. It follows that Baer’s criterion for
Q is satisfied if and only if r Q = Q, which proves the first two statements in (2). The
final statement follows since a quotient of a module Q with rQ = Q forallr # 0in R
has the same property.

Examples
(1) Since Z is not divisible, Z is not an injective Z-module. This also follows from the

fact that the exact sequence 0 — Z SN/ N Z/2Z. —> 0 corresponding to
multiplication by 2 does not split.

(2) Therational numbers Q is an injective Z-module.

(3) The quotient Q/Z of the injective Z-module Q is an injective Z-module.

(4) It is immediate that a direct sum of divisible Z-modules is again divisible, hence a
direct sum of injective Z-modules is again injective. For example, Q & Q/Z is an
injective Z-module. (See also Exercise 4).

(5) We shall see in Chapter 12 that no nonzero finitely generated Z-module is injective.

(6) Suppose that the ring R is an integral domain. An R-module A is said to be a divisible
R-module if rA = A for every nonzero r € R. The proof of Proposition 36 shows
that in this case an injective R-module is divisible.

(7) We shall see in Section 11.1 thatif R = F is a field then every F-module is injective.

(8) We shall see in Part VI that if F is any field and n € Z* then the ring R = M, (F)
of all n x n matrices with entries from F has the property that every R-module is
injective (and also projective). We shall also see that if G is a finite group of order
n and n # 0 in the field F then the group ring FG also has the property that every
module is injective (and also projective).

Corollary 37. Every Z-module is a submodule of an injective Z-module.

Proof: Let M be a Z-module and let A be any set of Z-module generators of M.
Let 7 = F(A) be the free Z-module on the set A. Then by Theorem 6 there is a
surjective Z-module homomorphism from F to M and if KC denotes the kernel of this
homomorphism then K is a Z-submodule of F and we can identify M = /K. Let Q
be the free Q-module on the set A. Then Q is a direct sum of a number of copies of Q,
so is a divisible, hence (by Proposition 36) injective, Z-module containing . Then K
is also a Z-submodule of Q, so the quotient Q/K is injective, again by Proposition 36.
Since M = F/K <€ Q/K, it follows that M is contained in an injective Z-module.

Corollary 37 can be used to prove the following more general version valid for
arbitrary R-modules. This theorem is the injective analogue of the results in Theorem 6
and Corollary 31 showing that every R-module is a quotient of a projective R-module.
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Theorem 38. Let R be aring with 1 and let M be an R-module. Then M is contained
in an injective R-module.

Proof: A proof is outlined in Exercises 15 to 17.

It is possible to prove a sharper result than Theorem 38, namely that there is a
minimal injective R-module H containing M in the sense that any injective map of
M into an injective R-module Q factors through H. More precisely, if M € Q for
an injective R-module Q then there is an injection ¢ : H <> ( that restricts to the
identity map on M; using ¢ to identify H as a subset of Q we have M € H C Q. (cf.
Theorem 57.13 in Representation Theory of Finite Groups and Associative Algebras
by C. Curtis and L Reiner, John Wiley & Sons, 1966). This module H is called the
injective hull or injective envelope of M. The universal property of the injective hull of
M with respect to inclusions of M into injective R-modules should be compared to the
universal property with respect to homomorphisms of M of the free module F(A) on a
set of generators A for M in Theorem 6. For example, the injective hull of Z is Q, and
the injective hull of any field is itself (cf. the exercises).

Flat Modules and D ®r __

We now consider the behavior of extensions 0 — L YoM 5 N 0 of
R-modules with respect to tensor products.

Suppose that D is a right R-module. For any homomorphism f : X — Y of left
R-modules we obtain a homomorphism 1 ® f : D ®r X — D ®r Y of abelian groups
(Theorem 13). If in addition D is an (S, R)-bimodule (for example, when S = R is
commutative and D is given the standard (R, R)-bimodule structure as in Section 4),
then 1 ® f is a homomorphism of left S-modules. Put another way,

D _:X—>D@®gX

is a covariant functor from the category of left R-modules to the category of abelian
groups (respectively, to the category of left S-modules when D is an (S, R)-bimodule),
cf. Appendix IL In a similar way, if D is a left R-module then __ ®x D is a covariant
functor from the category of right R-modules to the category of abelian groups (respec-
tively, to the category of right S-modules when D is an (R, S)-bimodule). Note that,
unlike Hom, the tensor product is covariant in both variables, and we shall therefore
concentrate on D ®g _ , leaving as an exercise the minor alterations necessary for
__®rD.

We have already seen examples where the map 1 ® ¥ : DQr L - DQ®r M
induced by an injective map ¥ : L < M is no longer injective (for example the
injection Z — Q of Z-modules induces the zero map from Z/2Z ®z Z = Z/2Z to
Z[2Z.®7zQ = 0). Onthe other hand, suppose thatp : M — N is a surjective R-module
homomorphism. The tensor product D ®g N is generated as an abelian group by the
simple tensors d ®n ford € D andn € N. The surjectivity of ¢ implies that n = ¢(m)
for some m € M, and then 1 ® o(d ® m) =d @ ¢(m) = d ® n shows that 1 ® ¢ is
a surjective homomorphism of abelian groups from D ®g M to D ®g N. This proves
most of the following theorem.
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Theorem 39. Suppose that D is a right R-module and that L, M and N are left
R-modules. If

O—>L—¢>M—¢>N—>O is exact,

then the associated sequence of abelian groups

DL DM DR N —> 0 isexact. (10.13)

If D isan (S, R)-bimodule then (13) is an exact sequence of left S-modules. In partic-
ular, if S = R is a commutative ring, then (13) is an exact sequence of R-modules with
respect to the standard R-module structures. The map 1 ® ¢ is not in general injective,
i.e., the sequence (13) cannot in general be extended to a short exact sequence.

The sequence (13) is exact for all right R-modules D if and only if

Lif>M—¢>N—>0 is exact.

Proof: For the first statement it remains to prove the exactness of (13) at D @z M.
Since ¢ o ¥ = 0, we have

189 (Y deyt)=Y de@oy@) =0

and it follows thatimage(1 ®v') € ker(1®¢). Inparticular, there is a natural projection
7w :(D®gM)/image(1 ® ) —> (D Qr M)/ker(1 ® ¢) = D g N. The composite
of the two projection homomorphisms

D®r M — (D ®g M)/ image(1 ® ) > D @ N

is the quotient of D @ g M by ker(1 ® ¢), so is just the map 1 ® ¢. We shall show that
7t is an isomorphism, which will show that the kernel of 1 ® ¢ is just the kernel of the
first projection above, i.e., image(1 ® ), giving the exactness of (13) at D @z M. To
see that 7 is an isomorphism we define an inverse map. First define 7’ : D x N —
(D ®& M)/ image(1 @ ¥) by n’((d,n)) = d @ m for any m € M with ¢(m) = n.
Note that this is well defined: any other element m’ € M mapping to n differs from
m by an element in ker¢ = image, i.e., M = m + Y (I) for some ! € L, and
d ® Yy (I) € image(l1 ® ¥). Itis easy to check that 7’ is a balanced map, so induces a
homomorphism 77 : D x N - (D ®g M)/ image(1 @ ) with7(d @ n) =d Q m.
Then 7 owr(d @ m) = 7(d ® ¢(m)) = d @ m shows that 7 o r = 1. Similarly,
7 o7t = 1, so that w and 7 are inverse isomorphisms, completing the proof that (13) is
exact. Note also that the injectivity of i was not required for the proof.

Finally, suppose (13) is exact for every right R-module D. In general, RQr X = X
for any left R-module X (Example 1 following Corollary 9). Taking D = R the

exactness of the sequence L X M5 N 0follows.

By Theorem 39, the sequence

0—> DRRL-ZE DrM 2 Dar N — 0
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is not in general exact since 1 ® ¥ need not be injective. If 0 — L XML N> 0is
a split short exact sequence, however, then since tensor products commute with direct
sums by Theorem 17, it follows that

is also a split short exact sequence.
The following result relating to modules D having the property that (13) can always
be extended to a short exact sequence is immediate from Theorem 39:

Proposition 40. Let A be a right R-module. Then the following are equivalent:
(1) For any left R-modules L, M, and N, if

0—L-S5ME5N—0

is a short exact sequence, then

0— AL 2 A M2 A@x N —0

is also a short exact sequence.

(2) For any left R-modules L and M, if 0 — L V5 M is an exact sequence of

left R-modules (i.e., ¢ : L — M is injective) then0 > A Qg L ﬂ ARQr M

is an exact sequence of abelian groups (i.e., 1 @ ¥ : AQr L > AQ®g M is
injective).

Definition. A right R-module A is called flat if it satisfies either of the two equivalent
conditions of Proposition 40.

For a fixed right R-module D, the first part of Theorem 39 is referred to by saying
that the functor D ® g __is right exact.

Corollary 41. If D is a right R-module, then the functor D ® __ from the category
of left R-modules to the category of abelian groups is right exact. If D is an (S, R)-
bimodule (for example when § = R is commutative and D is given the standard
R-module structure), then D ®g __ is a right exact functor from the category of left
R-modules to the category of left S-modules. The functor is exact if and only if D is a
flat R-module.

We have already seen some flat modules:
Corollary 42. Free modules are flat; more generally, projective modules are flat.
Proof: To show that the free R-module F is flat it suffices to show that for any
injectivemap ¢ : L — M of R-modules L and M theinducedmap 1® ¢ : FQr L —
F ®p M is also injective. Suppose first that F = R" is a finitely generated free R-

module. In thiscase F ®g L = R" @ L = L" since R ®g L = L and tensor products
commute with direct sums. Similarly F ® g M = M”" and under these isomorphisms
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themap 1® ¥ : F ®r L — F ®g M is just the natural map of L" to M" induced
by the inclusion y in each component. In particular, 1 ® ¥ is injective and it follows
that any finitely generated free module is flat. Suppose now that F is an arbiwary free
module and that the element ) _ f; ® [; € F ®g L is mapped to 0 by 1 ® ¢. This means
that the element ) (fi, ¥ (I;)) can be written as a sum of generators as in equation (6)
in the previous section in the free group on F x M. Since this sum of elements is finite,
all of the first coordinates of the resulting equation lie in some finitely generated free
submodule F’ of F. Then this equation implies that ) _ f; ® l; € F’ ®g L is mapped to
Oin F’' ®g M. Since F is a finitely generated free module, the injectivity we proved
above shows that ) f; ®; is0in F' ®g L and so also in F ®g L. It follows that 1 ® ¥
is injective and hence that F is flat.

Suppose now that P is a projective module. Then P is a direct summand of a
free module F (Proposition 30), say F = P @ P’. If ¢ : L —> M is injective then
1®y : F®r L > F ®g M is also injective by what we have already shown. Since
F = P @ P’ and tensor products commute with direct sums, this shows that

1Y :(P®r L)®(P'®r L) > (P ® M) ® (P’ ®r M)
is injective. Hence 1 ® ¢ : P ®g L - P ®g M is injective, proving that P is flat.

Examples

(1) Since Z is a projective Z-module it is flat. The example before Theorem 39 shows
that Z/2Z not a flat Z-module.

(2) The Z-module Q is a flat Z-module, as follows. Suppose ¥ : L — M is an injective
map of Z-modules. Every element of Q ®z L can be written in the form (1/d) ® I for
some nonzero integer d and some ! € L (Exercise 7 in Section4). If (1/d) ®!is in the
kernel of 1@y then (1/d)®v (1) is0 in Q®z M. By Exercise 8 in Section 4 this means
cy () = 0in M for some nonzero integer c. Then v(c - I) = 0, and the injectivity of
Y implies ¢ - I = 0 in L. But this implies that (1/d) ® = (1/cd) ® (c- 1) =0in L,
which shows that 1 ® ¥ is injective.

(3) The Z-module Q/Z is injective (by Proposition 36), but is not flat: the injective
map ¥ (z) = 2z from Z to Z does not remain injective after tensoring with Q/Z
1y :Q/Z®z Z — Q/Z ® Z has the nonzero element (% + Z) ® 1 in its kernel
— identifying Q/Z = Q/Z ®z Z this is the statement that multiplication by 2 has the
element 1/2 in its kernel).

(4) The direct sum of flat modules is flat (Exercise 5). In particular, Q @ Z is flat. This
module is neither projective nor injective (since Q is not projective by Exercise 8 and
Z is not injective by Proposition 36 (cf. Exercises 3 and 4).

We close this section with an important relation between Hom and tensor products:

Theorem 43. (Adjoint Associativity) Let R and S be rings, let A be aright R-module, let
B be an (R, S)-bimodule and let C be a right S-module. Then there is an isomorphism
of abelian groups:

Homgs(A ®g B, C) = Homg(A. Homg(B, C))

(the homomorphism groups are right module homomorphisms—note that Homg(B, C)
has the structure of a right R-module, cf. the exercises). If R = § is commutative this
is an isomorphism of R-modules with the standard R-module structures.
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Proof: Suppose ¢ : A®g B — C is a homomorphism. For any fixed a € A define
the map @ (a) from B to C by @(a)(b) = ¢(a ® b). It is easy to check that @(a)
is a homomorphism of right S-modules and that the map @ from A to Homg(B, C)
given by mapping a to @ (a) is ahomomorphism of right R-modules. Then f(¢) = @
defines a group homomorphism from Homg(A ®g B, C) to Homg (A, Homg(B, C)).
Conversely, suppose @ : A — Homg(B, C) is a homomorphism. The map from
A x B to C defined by mapping (a, b) to @(a)(c) is an R-balanced map, so induces a
homomorphism ¢ from A ®g B to C. Then g(®) = ¢ defines a group homomorphism
inverse to f and gives the isomorphism in the theorem.

As a first application of Theorem 43 we give an alternate proof of the first result
in Theorem 39 that the tensor product is right exact in the case where S = R is a
commutative ring. f0 — L — M —> N — 0is exact, then by Theorem 33 the
sequence

0 — Homg(N, E) — Homg(M, E) — Homg(L, E)
is exact forevery R-module E. Then by Theorem 28, the sequence
0 — Homg (D,Homg (N, E)) > Homg(D,Homg (M, E)) - Homg(D,Homg (L, E))
is exact for all D and all E. By adjoint associativity, this means the sequence
0 — Homg(D ®g N, E) — Homg(D ®r M, E) — Homg(D Qg L, E)

is exact for any D and all E. Then, by the second part of Theorem 33, it follows that
the sequence
D@RL—>D®RM—)D®RN—>O

is exact for all D, which is the right exactness of the tensor product.

As a second application of Theorem 43 we prove that the tensor product of two
projective modules over a commutative ring R is again projective (see also Exercise 9
for a more direct proof).

Corollary 44. If R is commutative then the tensor product of two projective R-modules
is projective.

Proof: Let P and P; be projective modules. Then by Corollary 32, Homg(P,, _ )
is an exact functor from the category of R-modules to the category of R-modules. Then
the composition Homg (P;, Homg(P,, _)) is an exact functor by the same corollary.
By Theorem 43 this means that Homg (P; ®g P2, __) is an exact functor on R-modules.
It follows again from Corollary 32 that P; ®g P; is projective.

Summary

Each of the functors Homg(A, _ ), Homg(__, A), and A ®g __, map left R-modules

to abelian groups; the functor __ ® g A maps right R-modules to abelian groups. When

R is commutative all four functors map R-modules to R-modules.

(1) Let A be a left R-module. The functor Homg (A, _) is covariant and left exact;
the module A is projective if and only if Homg(A, _) is exact (i.e., is also right
exact).
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3

C))

Let A be a left R-module. The functor Homg (__, A) is contravariant and left exact;
the module A is injective if and only if Homg(__, A) is exact.

Let A be a right R-module. The functor A ®g __is covariant and right exact; the
module A is flat if and only if A ®¢ __is exact (i.e., is also left exact).

Let A be a left R-module. The functor __ ®g A is covariant and right exact; the
module A is flat if and only if __ ®g A is exact.

(5) Projective modules are flat. The Z-module Q/Z is injective but not flat. The
Z-module Z @ Q is flat but neither projective nor injective.
EXERCISES
Let R be a ring with 1.
1. Suppose that
14 %
A B C
7
! !
PO AR AN

3.

4.

S.

is a commutative diagram of groups and that the rows are exact. Prove that

(a) ifp and ¢ are surjective, and B is injective then y is injective. [If ¢ € ker y, show there
is ab € B with ¢(b) = c. Show that ¢’(8(b)) = 0 and deduce that S(b) = y'(a’)
for some @’ € A’. Show there is an a € A with a(a) = a’ and that 8(y(a)) = B(b).
Conclude that b = v (a) and hence ¢ = ¢(b) = 0.]

(b) if ¥, @, and y are injective, then B is injective,

(c) if ¢, , and y are surjective, then 8 is surjective,

(d) if B is injective, a and y are surjective, then y is injective,

(e) if B is surjective, y and ¥’ are injective, then « is surjective.

. Suppose that

A B C D

of el ol

A—B ——>(C' ——>D
is a commutative diagram of groups, and that the rows are exact. Prove that
(a) if a is surjective, and B, § are injective, then y is injective.
(b) if § is injective, and «, y are surjective, then 8 is surjective.
Let P, and P, be R-modules. Prove that P; @ P, is a projective R-module if and only if
both P; and P, are projective.
Let 01 and Q7 be R-modules. Prove that 0 & Q> is an injective R-module if and only
if both Q1 and Q> are injective.
Let A; and A; be R-modules. Provethat A1 @ A3 is a flat R-module if and only if both A;
and A are flat. More generally, prove that an arbitrary direct sum ) _ A; of R-modules is
flat if and only if each 4; is flat. [Use the fact that tensor product commutes with arbitrary
direct sums.]

. Prove that the following are equivalent for a ring R:

(i) Every R-module is projective.
(ii) Every R-module is injective.
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10.

11.

12.

13.

14.

. Let A be a nonzero finite abelian group.

(a) Prove that A is not a projective Z-module.
(b) Prove that A is not an injective Z-module.

. Let O be anonzerodivisible Z-module. Provethat Q is not a projective Z-module. Deduce

that the rational numbers Q is not a projective Z-module. [Show first that if F is any free
module then N®° ,nF = 0 (use a basis of F to prove this). Now suppose to the contrary
that Q is projective and derive a contradiction from Proposition 30(4).]

. Assume R is commutative with 1.

(a) Prove that the tensor product of two free R-modules is free. [Use the fact that tensor
products commute with direct sums.]
(b) Use (a) to prove that the tensor product of two projective R-modules is projective.

Let R and S be rings with 1 and let M and N be left R-modules. Assume also that M is

an (R, S)-bimodule.

(@) Fors € S and for ¢ € Homg(M, N) define (s¢) : M — N by (s¢)(m) = @(ms).
Prove that s¢ is a homomorphism of left R-modules, and that this action of S on
Homg (M, N) makes it into a left S-module.

(b) Let S = R and let M = R (considered as an (R, R)-bimodule by left and right
ring multiplication on itself). For each n € N define ¢, : R > N by ¢, (r) = rn,
i.e., ¢n is the unique R-module homomorphism mapping 1g to n. Show that ¢, €
Homg (R, N). Use part (a) to show that the map n > ¢, is an isomorphism of left
R-modules: N = Homg(R, N).

(c) Deduce thatif N is a free (respectively, projective, injective, flat) left R-module, then
Homg (R, N) is also a free (respectively, projective, injective, flat) left R-module.

Let R and S be rings with 1 and let M and N be left R-modules. Assume also that N is an

(R, S)-bimodule.

(@) Fors € S and for ¢ € Homg (M, N) define (¢s) : M — N by (¢s)(m) = ¢(m)s.
Prove that ¢s is a homomorphism of left R-modules, and that this action of S on
Hompg (M, N) makes it into a right S-module. Deduce that Homg (M, R) is a right
R-module, for any R-module M—called the dual moduleto M.

(b) Let N = R be considered as an (R, R)-bimodule as usual. Under the action de-
fined in part (a) show that the map r > ¢, is an isomorphism of right R-modules:
Homg (R, R) = R, where ¢, is the homomorphism that maps 1 to r. Deduce that
if M is a finitely generated free left R-module, then Homg (M, R) is a free right
R-module of the same rank. (cf. also Exercise 13.)

(c) Show that if M is a finitely generated projective R-module then its dual module
Hompg (M, R) is also projective.

Let A be an R-module, let I be any nonempty index set and for each i € I let B; be an

R-module. Prove the following isomorphisms of abelian groups; when R is commutative

prove also that these are R-module isomorphisms. (Arbitrary direct sums and direct

products of modules are introduced in Exercise 20 of Section 3.)

(a) Homg(P;¢; Bi, A) = [[;c; Homg(B;, A)

(b) Hompg(A, Hiel B)) = Hiel Homg(A, B;).

(a) Show that the dual of the free Z-module with countable basis is not free. [Use the
preceding exercise and Exercise 24, Section 3.] (See also Exercise 5 in Section 11.3.)

(b) Show that the dual of the free Z-module with countable basis is also not projective.
[You may use the fact that any submodule of a free Z-module is free.]

Let0 — L <, M-E N—0Obea sequence of R-modules.
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(a) Prove that the associated sequence

0 —> Homg(D, L) %> Homg(D, M) %> Homg(D, N) —> 0

is a short exact sequence of abelian groups for all R-modules D if and only if the
original sequence is a split short exact sequence. [To show the sequence splits, take
D = N and show the lift of the identity map in Homg (N, N) to Homg(N, M) is a
splitting homomorphism for ¢.]

(b) Prove that the associated sequence

0 —> Homg (N, D) %> Homg(M, D) %> Homg(L, D) —> 0

is a short exact sequence of abelian groups for all R-modules D if and only if the
original sequence is a split short exact sequence.

15. Let M be a left R-module where R is a ring with 1.
(a) Show that Homz(R, M) is a left R-module under the action (re)(r’) = ¢(r'r) (see
Exercise 10).

(b) Suppose that 0 —> A Y, B is an exact sequence of R-modules. Prove that if every
homomorphism f from A to M lifts to a homomorphism F from B to M with f =
F o, then every homomorphism f’ from A to Homz (R, M) lifts to a homomorphism
F’ from B toHomz(R, M) with f’ = F’oy. [Given f’, show that f(a) = f'(a)(1g)
defines a homomorphism of A to M. If F is the associated lift of f to B, show that
F'(b)(r) = F(rb) defines a homomorphism from B‘to Homgz(R, M) that lifts f’.]

(c) Prove that if Q is an injective R-module then Homz(R, Q) is also an injective R-
module.

16. This exercise proves Theorem 38 that every left R-module M is contained in an injective
left R-module.
(a) Show that M is contained in an injective Z-module Q. [M is a Z-module—use
Corollary 37.]
(b) Show that Homg (R, M) € Homgz(R, M) € Homz(R, Q).
(c) Use the R-module isomorphism M = Homg (R, M) (Exercise 10) and the previous
exercise to conclude that M is contained in an injective module.

17. This exercise completes the proof of Proposition 34. Suppose that Q is an R-module with
the property that every short exact sequence 0 > Q — M; — N — 0 splits and suppose

that the sequence 0 — L ¥% M is exact. Prove that every R-module homomorphism f
from L to Q can be lifted to an R-module homomorphism F from M to Q with f = Foyr.
[By the previous exercise, Q is contained in an injective R-module. Use the splitting
property together with Exercise 4 (noting that Exercise 4 can be proved using (2) in
Proposition 34 as the definition of an injective module).]

18. Prove that the injective hull of the Z-module Z is Q. [Let H be the injective hull of Z
and argue that Q contains an isomorphic copy of H. Use the divisibility of H to show
1/n € H for all nonzero integers n, and deduce that H = Q.]

19. If F is a field, prove that the injective hull of F is F.

20. Prove that the polynomial ring R[x] in the indeterminate x over the commutative ring R
is a flat R-module.

21. Let R and S be rings with 1 and suppose M is a right R-module, and N is an (R, S)-
bimodule. If M is flat over R and N is flat as an S-module prove that M @ N is flatasa
right S-module.
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22. Suppose that R is a commutative ring and that M and N are flat R-modules. Prove that
M ®g N is a flat R-module. [Use the previous exercise.]

23. Prove thatthe (right) module M ®r S obtained by changing thebase from thering R to the
ring S (by some homomorphism f : R — S with f(1g) = 1s, cf. Example 6 following
Corollary 12 in Section 4) of the flat (right) R-module M is a flat S-module.

24. Prove that A is a flat R-module if and only if for any left R-modules L and M where L is
finitely generated, then i : L — M injectiveimplies thatalso 1® ¢ : AQrL —> AQrM
is injective. [Use the techniques in the proof of Corollary 42.]

25. (A Flatness Criterion) Parts (a)-(c) of this exercise prove that A is a flat R-module if and
only if for every finitely generated ideal I of R, the mapfromAQ®r I > AQr R= A
induced by the inclusion I C R is again injective (or, equivalently, A g I = AI C A).
(a) Prove that if A is flat then A ® g I — A ®r R is injective.

(b) If A®r I — A ®r R is injective for every finitely generated ideal 7, prove that
A®gr 1 — AQ®g R isinjective for every ideal I. Show thatif K is any submodule of
a finitely generated free module F then A ® g K — A ®p F is injective. Show that
the same is true for any free module F. [Cf. the proof of Corollary 42.]

(¢) Under the assumptionin (b), suppose L and M are R-modulesand L X M isinjective.

1 .
Prove that A ®g L gw A ®r M is injective and conclude that A is flat. [Write M as
a quotient of the free module F, giving a short exact sequence

0—>K—>F—f>M—>O.

Show thatif J = f -1 (¥ (L)) and¢ : J — F is the naturalinjection, then the diagram

0 K > J > L 0
4 )
0 K > F > M >0

is commutative with exact rows. Show that the induced diagram

A®rK ——> AQrJ ——> AQrL ——>0

idl 1®‘l lcwl

ARRK — > AQrF ——> AQr M ——>0
is commutative with exact rows. Use (b) to show that 1 ® ¢ is injective, then use
Exercise 1 to conclude that 1 ® ¥ is injective.]

(d) (A Flatness Criterion for quotients) Suppose A = F/K where F is flat (e.g., if F is
free) and K is an R-submodule of F. Provethat A is flatif andonly if FINK = K1
for every finitely generated ideal I of R. [Use (a) toprove F ®gr I = FI and observe
the image of K ®g 1 is K I; tensor the exact sequence 0 - K — F — A — 0 with
I toprovethat A ®g I = FI/K I, and apply the flatness criterion.]

26. Suppose R is a P1.D. This exercise proves that A is a flat R-module if and only if A is
torsion free R-module (i.e., if a € A is nonzero and r € R, then ra = 0 implies r = 0).
(a) Suppose that A is flat and for fixed r € R consider the map ¢, : R — R defined
by multiplication by r: ¢,(x) = rx. If r is nonzero show that i, is an injection.
Conclude from the flatness of A that the map from A to A defined by mapping a to
ra is injective and that A is torsion free.
(b) Suppose that A is torsion free. If I is a nonzero ideal of R, then I = rR for some
nonzero r € R. Show that the map i, in (a) induces an isomorphism R = I of
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R-modules and that the composite R ij) IS5 Rof ¥, with the inclusiont : I C R

. . - . - l r
is multiplication by r. Prove that the composite A ®g R i g AQ®rlI 94 ®r R

corresponds to the map a — ra under the identification A ®g R = A and that this
composite is injective since A is torsion free. Show that 1 ® v, is an isomorphism
and deduce that 1 ®: is injective. Use the previous exercise to conclude that A is flat.

27. Let M, A and B be R-modules.
(@) Suppose f : A > M and g : B > M are R-module homomorphisms. Prove that
X ={(a,b) | a € A, b e B with f(a) = g(b)} is an R-submodule of the direct sum
A @ B (called the pullback or fiber product of f and g) and that there is a commutative
diagram -

2
——> B

X
A—L sy
where 1 and 77 are the natural projections onto the first and second components.
(b) Suppose f': M - Aand g’ : M — B are R-module homomorphisms. Prove that

the quotient ¥ of A @ B by {(f'(m), —g’(m)) | m € M} is an R-module (called the
pushout or fiber sum of f’ and g’) and that there is a commutative diagram

’
M_g_>B

A
nl

A—L >y

where 5{ and mj are the natural maps to the quotient induced by the maps into the
first and second components.

28. (a) (Schanuel's Lemma) If0 - K — P A M>50and0> K > PP 5 M 5 0are
exact sequences of R-moduleswhere P and P’ are projective,prove P @& K’ = P’ & K
as R-modules. [Show that there is an exact sequence 0 — kerm — X 5P>0

withkerr = K’, where X is the fiber product of ¢ and ¢’ as in the previous exercise.
Deduce that X = P @ K’. Show similarlythat X = P’ @ K ]

b)) 0> M—> Q i!/» L—>0and0> M—> Q’i;L’—>Oareexactsequencesof
R-modules where Q and Q' are injective, prove Q @ L' = Q' & L as R-modules.

The R-modules M and N are said to be projectively equivalent if M & P = N & P’ for some
projective modules P, P’. Similarly, M and N are injectively equivalent if M Q =N & ¢’
for some injective modules Q, Q’. The previous exercise shows K and K’ are projectively
equivalent and L and L' are injectively equivalent.
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CHAPTER 11

Vector Spaces

In this chapter we review the basic theory of finite dimensional vector spaces over
an arbitrary field F (some infinite dimensional vector space theory is covered in the
exercises). Since the proofs are identical to the corresponding arguments for real vector
spaces our treatment is very terse. For the most part we include only those results which
are used in other parts of the text so basic topics such as Gauss—Jordan elimination,
row echelon forms, methods for finding bases of subspaces, elementary properties of
matrices, etc., are not covered or are discussed in the exercises. The reader should
therefore consider this chapter as a refresher in linear algebra and as a prelude to field
theory and Galois theory. Characteristic polynomials and eigenvalues will be reviewed
and treated in a larger context in the next chapter.

11.1 DEFINITIONS AND BASIC THEORY

The terminology for vector spaces is slightly different from that of modules, that is,
when the ring R is a field there are different names for many of the properties of R-
modules which we defined in the last chapter. The following is a dictionary of these new
terms (many of which may already be familiar). The definition of each corresponding
vector space property is the same (verbatim) as the module-theoretic definition with
the only added assumption being that the ring R is a field (so these definitions are not
repeated here).

Terminology for R any Ring

Terminology for R a Field

408

M is an R-module

m is an element of M

« is aring element

N is a submodule of M

M/N is aquotient module

M is afree module of rank n

M is a finitely generated module

M is a nonzero cyclic module

@ : M — N is an R-module homomorphism
M and N are isomorphic as R-modules
the subset A of M generates M

M = RA

M is a vector space over R

m is a vector in M

« is a scalar

N is a subspace of M

M/N is a quotient space

M is a vector space of dimension n

M is a finite dimensional vector space

M is a 1-dimensional vector space

¢ : M — N is a linear wansformation

M and N are isomorphic vector spaces

the subset A of M spans M

each element of M is a linear combination
of elements of A i.e., M = Span(A)



For the remainder of this chapter F is a field and V is a vector space over F.

One of the first results we shall prove about vector spaces is that they are free F-
modules, that is, they have bases. Although our arguments treat only the case of finite
dimensional spaces, the corresponding result for arbitrary vector spaces is proved in the
exercises as an application of Zorn’s Lemma. The reader may first wish to review the
section in the previous chapter on free modules, especially their properties pertaining
to homomorphisms.

Definition.
(1) A subset S of V is called a set of linearly independent vectors if an equation
avy +auy +-- - +auv, =0withay,ap,...,a, € Fandvy, vy, ..., v, € S
impliesoy =ap =---=a, = 0.

(2) A basis of a vector space V is an ordered set of linearly independent vectors
which span V. In particular two bases will be considered different even if one
is simply a rearrangement of the other. This is sometimes referred to as an
ordered basis.

Examples

(1) The space V = F[x] of polynomials in the variable x with coefficients from the
field F is in particular a vector space over F. The elements 1, x, x2,...are linearly
independent by definition (i.e., a polynomial is O if and only if all its coefficients are
0). Since these elements also span V by definition, they are a basis for V.

(2) The collection of solutions of a linear, homogeneous, constant coefficient differential
equation (for example, y” — 3y’ + 2y = 0) over C form a vector space over C
since differentiation is a linear operator. Elements of this vector space are linearly
independent if they are linearly independent as functions. For example, &' and e are
easily seen to be solutions of the equation y” — 3y’ + 2y = 0 (differentiation with
respect to t). They are linearly independent functions since ae' + be?! = 0 implies
a+b=0(etz =0)and ae + be? =0 (lett = 1) and the only solution to these two
equations is a = b = 0. It is a theorem in differential equations that these elements

span the set of solutions of this equation, hence are a basis for this space.
*

Proposition 1. Assume the set A = {v;, v, ..., U,} spans the vector space V but no
proper subset of A spans V. Then A is a basis of V. In particular, any finitely generated
(i.e., finitely spanned) vector space over F is afree F-module.

Proof: It is only necessary to prove that vj, v, ..., v, are linearly independent.
Suppose aj v + apvz + - - - + v, = 0 where not all of the o; are 0. By reordering,
we may assume that a1 # 0 and then

) .
v = —— (v + -+ - + apvp).
o
Itfollowsthat {vy, vs, ..., v,} alsospans V since any linear combination of v, vy, ..., v,
can be written as a linear combination of v;, vs, ..., v, using the equation above. This

is a contradiction.
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Example

Let F be a field and consider F[x]/(f(x)) where f(x) = x" 4+ an_1x" "1 +-- -4 a1x +ay.
The ideal (f(x)) is a subspace of the vector space F[x] and the quotient F[x]/(f (x)) is
also a vector space over F. By the Euclidean Algorithm, every polynomial a(x) € F[x]
can be written uniquely in the form a(x) = q(x) f(x) + r(x) where r(x) € F[x] and
0 < degr(x) < n—1. Since g(x)f(x) € (f(x)), it follows that every element of
the quotient is represented by a polynomial r(x) of degree < n — 1. Two distinct such
polynomials cannot be the same in the quotient since this would say their difference (which
is a nonzero polynomial of degree at most » — 1) would be divisible by f(x) (which is
of degree n). It follows that the elements 1,x,x2,...,x"1 (the bar denotes the image of
these elements in the quotient, as usual) span F[x]/(f(x)) as a vector space over F and
that no proper subset of these elements also spans, hence these elements give a basis for

Fx]1/(f(x)).

Corollary 2. Assume the finite set .4 spans the vector space V. Then A contains a
basis of V.

Proof: Any subset B of A spanning V such that n o proper subset of B also spans
V (there clearly exist such subsets) is a basis for V by Proposition 1.

Theorem 3. (A Replacement Theorem) Assume A = {ay, ay,...,ay} is a basis for
V containing n elements and {b;, b, ..., b,,} is a set of linearly independent vectors
in V. Then there is an ordering a, as, ..., a, such that for each k € {1,2, ..., m}
the set {by, by, ..., by, Gr+1, Gry2, - - -, Qn} is a basis of V. In other words, the elements
by, by, ..., by, can be used to successively replace the elements of the basis A, still
retaining a basis. In particular, n > m.

Proof: Proceed by induction on k. If k = O there is nothing to prove, since A is
given as a basis for V. Suppose now that {b;, by, . .., by, Gx+1, Gk+2, - - -, An} is a basis
for V. Then in particular this is a spanning set, so b4 is a linear combination:

b1 = Biby + - - - + Biby + axq1Gk41 + - - + Qnay. (11.1)

Not all of the ¢; can be O, since this would imply by is a linear combination of
by, by, ..., by, contrary to the linear independence of these elements. By reordering
if necessary, we may assume a1 # 0. Then solving this last equation for a4 as a
linear combination of by, and by, by, . .., by, aGx42, . . . , G, shows

Span{blv b2v LR bk’ bk-{—l, ak+2~: cery an} = Span{bly va LR bk7 ak+l9ak+2s D) an}

and so this is a spanning set for V. It remains to show by, ..., by, bg+1, Gk425 - - - 5 Gn
are linearly independent. If

Prby + - - - + Bibr + Bri1bkr + Cri2Gr42 + - + 0@, =0 (11.2)

thensubstituting for by; from the expressionfor by inequation (1), we obtain a linear
combination of {by, by, . .., by, Gx+1, Gk+2, - - - , Gy} equal to 0, where the coefficient of
ar+1 18 Pry1- Since this last set is a basis by induction, all the coefficients in this linear
combination, in particular S, must be 0. But then equation (2) is

Bib1 + - - + Beby + ary2ak42 + - - + apa, = 0.
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Again by the induction hypothesis all the other coefficients must be 0 as well. Thus
{b1, bo, ..., by, bry1, Grya, - - -, ay) is a basis for V, and the induction is complete.

Corollary 4.
(1) Suppose V has a finite basis with n elements. Any set of linearly independent
vectors has < n elements. Any spanning set has > n elements.
(2) If V has some finite basis then any two bases of V have the same cardinality.

Proof: (1) This is a restatement of the last result of Theorem 3 and Corollary 2.
(2) This is immediate from (1) since a basis is both a spanning set and a linearly
independent set.

Definition. If V is a finitely generated F-module (i.e., has a finite basis) the cardinality
of any basis is called the dimension of V and is denoted by dim ¢ V, or justdim V when
F is clear from the context, and V is said to be finite dimensional over F. If V is not
finitely generated, V is said to be infinite dimensional (written dim V = 00).

Examples

(1) The dimension of the space of solutions to the differential equation y” —3y’+2y =0
over C is 2 (with basis €', €%, for example). In general, it is a theorem in differential
equations that the space of solutions of an n™ order linear, homogeneous, constant
coefficient differential equation of degree n over C form a vector space over C of
dimension n.

(2) The dimension over F of the quotient F[x] / (f(x)) by the nonzero polynomial f(x)
considered aboveis n = deg f(x). The space F[x] and its subspace ( f(x)) are infinite
dimensional vector spaces over F.

Corollary 5. (Building—Up Lemma) If A is a set of linearly independent vectors in the
finite dimensional space V then there exists a basis of V containing A.

Proof: This is also immediate from Theorem 3, since we can use the elements of
A to successively replace the elements of any given basis for V (which exists by the
assumption that V is finite dimensional).

Theorem 6. If V is an n dimensional vector space over F, then V = F". In particular,
any two finite dimensional vector spaces over F of the same dimension are isomorphic.

Proof- Let v, vy, . .., v, be a basis for V. Define the map
:F">V by e(ay, ay, ..., ap) = a1V + @207 + -+ - + Qy V.

The map ¢ is clearly F-linear, is surjective since the v; span V, and is injective since
the v; are linearly independent, hence is an isomorphism.
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Examples

(1) LetF be a finite field with g elements and let W be a k-dimensional vector space over
F. We show that the number of distinct bases of W is

@ - D" - -gH....¢" - ™.

Every basis of W can be built up as follows. Any nonzero vector w can be the first
element of a basis. Since W is isomorphic to F*, |W| = q", so there are q" -1
choices for wi. Any vector not in the 1-dimensional space spanned by wj is linearly
independent from w; and so may be chosen for the second basis element, wy. A
1-dimensional space is isomorphic to F and so has ¢ elements. Thus there are gk — g
choices for wy. Proceeding in this way one sees that at the i stage any vector not in the
(i — 1)-dimensional space spanned by wi, wa, ..., w;j—1 will be linearly independent
from wy, wo, ..., wi_1 and so may be chosen for the i™ basis vector w;. An (i — 1)-
dimensional space is isomorphic to F©~! and so has g'~! elements. Thus there are
q" — qi —1 choices for w;. The process terminates when wy is chosen, for then we have
k linear independent vectors in a k-dimensional space, hence a basis.

(2) Let F be a finite field with g elements and let V be an n-dimensional vector space
over F. Foreachk € {1, 2,..., n} we show that the number of subspaces of V of
dimension k is

@ -DE@"~q)...(¢" —¢""

(g —1D(gk—q)...(g" —g* 1)’

Any k-dimensional space is spanned by k independent vectors. By arguing as in the
preceding example the numerator of the above expression is the number of ways of
picking k independent vectors from an n-dimensional space. Two sets of k independent
vectors span the same space W if and only if they are both bases of the k-dimensional
space W. In order to obtain the formula for the number of distinct subspaces of
dimension k we must divide by the number of repetitions, i.e., the number of bases of
a fixed k-dimensional space. This factor which appears in the denominator is precisely
the number computed in Example 1.

Next, we prove an important relation between the dimension of a subspace, the
dimension of its associated quotient space and the dimension of the whole space:

Theorem 7. Let V be avectorspace over F and let W be a subspace of V. Then V/W
is a vector space with dim V = dim W + dim V/ W (where if one side is infinite then
both are).

Proof: Suppose W has dimension m and V has dimension n over F and let
wiy, Wy, ..., Wy, be a basis for W. By Corollary 5, these linearly independent ele-
ments of V can be extended to a basis wy, wy, ..., Wy, Umtls - - - » Uy Of V. The natural
surjective projection map of V into V /W maps each w; to 0. No linear combination of
the v; is mapped to 0, since this would imply this linear combination is an element of
W, contrary to the choice of the v;. Hence, the image V /W of this projection map is
isomorphic to the subspace of V spanned by the v;, hence dim V/W = n —m, which is
the theorem when the dimensions are finite. If either side is infinite it is an easy exercise
to produce an infinite number of linearly independent vectors showing the other side is
also infinite.
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Corollary 8. Let ¢ : V — U be a linear transformation of vector spaces over F. Then
ker ¢ is a subspace of V, ¢ (V) is a subspace of U and dim V = dim ker ¢ + dim ¢ (V).

Proof: This follows immediately from Theorem 7. Note that the proof of Theorem
7 is in fact the special case of Corollary 8 where U is the quotient V/W and ¢ is the
natural projection homomorphism.

Corollary 9. Let ¢ : V — W be alinear transformation of vector spaces of the same
finite dimension. Then the following are equivalent:

(1) ¢ is an isomorphism

(2) ¢ is injective, i.e., Kerp =0

(3) ¢ is surjective, ie., p(V) =W

(4) ¢ sends a basis of V to a basis of W.

Proof: The equivalence of these conditions follows from Corollary 8 by counting
dimensions.

Definition. If ¢ : V — U is a linear transformation of vector spaces over F, ker ¢ is
sometimes called the null space of ¢ and the dimension of ker ¢ is called the nullity of
¢. The dimension of ¢(V) is called the rank of ¢. If ker ¢ = 0, the transformation is
said to be nonsingular.

Example

Let F be a finite field with g elements and let V be an n-dimensional vector space over
F. Recall that the general linear group GL(V) is the group of all nonsingular linear
transformations from V to V (the group operation being composition). We show that the
order of this group is

IGL(V)l = (" - D@" —9)@" —¢?)...@@" —q" ).

To see this, fix a basis v1, ..., v, of V. A linear transformation is nonsingular if and only
if it sends this basis to another basis of V. Moreover, if wj ..., w, is any basis of V, by
Theorem 6 in Section 10.3 there is a unique linear transformation which sends v; to wj,
1 <i < n. Thus the number of nonsingular linear transformations from V to itself equals
the number of distinct bases of V. This number, which was computed in Example 1 above
(with k = n), is the order of GL(V).

EXERCISES
1. Let V = R" and let (a1, a2, ..., a,) be a fixed vector in V. Prove that the collection of
elements (x1, x2, ..., xp) of V with aijx; + azx2 + ... + a,x, = 0 is a subspace of V.

Determine the dimension of this subspace and find a basis.

2. Let V be the collection of polynomials with coefficients in Q in the variable x of degree
at most 5. Prove that V is a vector space over Q of dimension 6, with 1, x, x2, ..., x> as
basis. Provethat1,14+x,14+x+x2,..., 14 x4+ x%2 +x3 +x%+ x5 is also a basis for V.
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3.

4.

S.

6.

Let ¢ be the linear transformation ¢ : R* — R! such that

¢((1,0,0,0)) =1 ¢((1,-1.0,0)) =0
e((1,-1,1L,0) =1 e(1,-1.1,-1)) =0.

Determine ¢((a, b, c, d)).

Prove that the space of real-valued functions on the closed interval [a, b] is an infinite
dimensional vector space over R, where a < b.

Prove that the space of continuous real-valued functions on the closed interval [a, b] is an
infinite dimensional vector space over R, where a < b.

Let V be a vector space of finite dimension. If ¢ is any linear transformation from V to V
prove there is an integer m such that the intersection of the image of ¢ and the kernel of
@™ is {0}).

. Let ¢ be a linear transformation from a vector space V of dimension # to itself that satisfies

¢? = 0. Prove that the image of ¢ is contained in the kernel of ¢ and hence that the rank
of ¢ is at most n /2.

Let V be a vector space over F and let ¢ be a linear transformation of the vector space
V toitself. A nonzero element v € V satisfying ¢(v) = Av for some A € F is called
an eigenvector of ¢ with eigenvalue A. Prove that for any fixed A € F the collection of
eigenvectors of ¢ with eigenvalue A together with O forms a subspace of V.

Let V be a vector space over F and let ¢ be a linear transformation of the vector space V
to itself. Suppose fori = 1,2, ...,k that v; € V is an eigenvector for ¢ with eigenvalue
A; € F (cf. the preceding exercise) and that all the eigenvalues A; are distinct. Prove that
v1, V2...., v are linearly independent. [Use induction on k: write a linear dependence
relation among the v; and apply ¢ to get another linear dependence relation among the v;
involving the eigenvalues — now subtract a suitable multiple of the first linear relation to get
a linear dependence relation on fewer elements.] Conclude that any linear transformation
on an n-dimensional vector space has at most n distinct eigenvalues.

In the following exercises let V be a vector space of arbitrary dimension over a field F.

10.

11.

12

13.

14.

Prove that any vector space V has a basis (by convention the null set is the basis for the
zero space). [Let S be the set of subsets of V consisting of linearly independent vectors,
partially ordered under inclusion; apply Zorn’s Lemma to S and show a maximal element
of S is a basis.]

Refine your argument in the preceding exercise to prove that any setof linearly independent
vectors of V is contained in a basis of V.

If Fisa field with a finite or countable number of elements and V isaninfinite dimensional
vector space over F with basis B, prove that the cardinality of V equals the cardinality of
B. Deduce in this case that any two bases of V have the same cardinality.

Prove that as vector spaces over Q, R” = R, forall n € Z* (note that, in particular, this
means R” and R are isomorphic as additive abelian groups).

Let A be a basis for the infinite dimensional space V. Prove that V is isomorphic to the
direct sum of copies of the field F indexed by the set .A. Prove that the direct product of
copies of F indexed by .A is a vector space over F and it has strictly larger dimension than
the dimension of V (see the exercises in Section 10.3 for the definitions of direct sum and
direct product of infinitely many modules).
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11.2 THE MATRIX OF A LINEAR TRANSFORMATION

Throughout this section let V, W be vector spaces over the same field F, let B =

{v1, v2, ..., v} be an (ordered) basis of V, let £ = {w;, wa, ..., w,} be an (ordered)
basis of W and let ¢ € Hom(V, W) be a linear transformation from V to W. For each
j €{1,2, ..., n} write the image of v; under ¢ in terms of the basis £:
m
o) =) aijw;. (11.3)

i=]

Let M, g (¢) = (ai;) be them x n matrix whose i, j entry is ¢;; (thatis, use the coefficients
of the w;’s in the above computation of ¢(v;) for the j% column of this matrix). The
matrix M f; (p) is called the matrix of ¢ with respect to the bases B, £. The domain basis
is the lower and the codomain basis the upper letters appearing after the “M.” Given
this matrix, we can recover the linear transformation ¢ as follows: to compute ¢(v) for
v € V, write v in terms of the basis B:

n
v=Za,~v,~, a; € F,
-

and then calculate the product of the m x n and n x 1 matrices

o B
Mg (%) x oiz = ﬂf
Qn Bm

The image of v under ¢ is given by

) =) Bwi,
i=1
i.e., the column vector of coordinates of ¢(v) with respect to the basis £ are obtained
by multiplying the matrix M g((p) by the column vector of coordinates of v with respect
to the basis B (sometimes denoted [¢(v)]e = Mg (©I[vlB)-

Definition. The m x n matrix A = (a;;) associated to the linear transformation ¢
above is said to represent the linear transformation ¢ with respect to the bases B, €.
Similarly, ¢ is the linear transformation represented by A with respect to the bases B,
E.

Examples

(1) Let V = R3 with the standard basis B = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} and let W =
R? with the standard basis £ = {(1, 0), (0, 1)}. Let ¢ be the linear transformation
ox,y,2) = (x+2y,x +y+2z). Since ¢(1,0,0) = (1.1), ¢(0,1,0) = (2, 1),

¢(0,0, 1) = (0, 1), the matrix A = Mf;(w) is the matrix (} ? (1)
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(2) Let V. = W be the 2-dimensional space of solutions of the differential equation
y" — 3y’ + 2y = 0 over C and let B = £ be the basis v; = ', v; = €?. Since the
coefficients of this equation are constants it is easy to check that if y is a solution then
its derivative y’ is also a solution. It follows that the map ¢ = d/dt = differentiation
(withrespectto ¢) is alinear transformation from V toitself. Since ¢(v1) = d(e')/dt =
e = v; and p(1p) = d(ez‘)/dt = 2¢% = 2u, we see that the corresponding matrix
with respect to these bases is the diagonal matrix ((l) (2)) .

3) LetV=W=Q3 = {(x,y,2) | x, ¥, z € Q) be the usual 3-dimensional vector space
of ordered 3-tuples withentries from the field F = Q of rational numbers and suppose
@ is the linear transformation

ox,y,2) = Ox +4y + 5z, —4x — 3z, —6x — 4y — 22), x,y,2€Q

from V to itself. Take the standard basis ¢; = (1,0,0), e2 = (0, 1,0), e3 = (0,0, 1)
for V and for W = V. Since ¢(1,0.0) = (9,—4,-6), ¢(0,1,0) = (4,0,—4),
¢(0,0,1) = (5, —3, —2), the matrix A representing this linear transformation with

respect to these bases is
9 4 5§
A=|—-4 0 -3].
-6 —4 -2

Theorem 10. Let V be a vector space over F of dimension »n and let W be a vector space
over F of dimension m, with bases B, £ respectively. Then the map Homg(V, W) —
M, n (F) from the space of linear transformations from V to W to the space of m x n
matrices with coefficients in F defined by ¢ > M g (¢) is a vector space isomorphism.
In particular, there is a bijective correspondence between linear transformations and
their associated matrices with respect to a fixed choice of bases.

Proof: The columns of the matrix M, g (p) are determined by the action of ¢ on
the basis B as in equation (3). This shows in particular that the map ¢ > M, g((p) is
an F-linear map since ¢ is F-linear. This map is surjective since given a matrix M,
the map ¢ defined by equation (3) on a basis and then extended by linearity is a linear
transformation with matrix M. The map is injective since two linear transformations
agreeing on a basis are the same.

Note that different choices of bases give rise to different isomorphisms, so in the
same sense that there is no natural choice of basis for a vector space, there is no natural
isomorphism between Homg(V, W) and M, x,, (F).

Corollary 11. The dimension of Homg(V, W) is (dim V)(dim W).

Proof: The dimension of M,,x, (F) is mn.

Definition. Anm x n matrix A is called nonsingular if Ax = 0 with x € F" implies
x=0.
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The connection of the term nonsingular applied to matrices and to linear trans-
formations is the following: let A = M g((o) be the matrix associated to the linear
transformation ¢ (with some choice of bases B, £). Then independently of the choice
of bases, the m x n matrix A is nonsingular if and only if the linear transformation ¢ is a
nonsingular linear transformation from the n-dimensional space V tothe m-dimensional
space W (cf. the exercises).

Assume now that U, V and W are all finite dimensional vector spaces over F
with ordered bases D, B and £ respectively, where B and £ are as before and suppose
D={uy,uz,...,ur}.Assume : U -> Vand ¢ : V — W are linear transformations.
Their composite, ¢ o ¥, is alinear transformation from U to W, so we can compute its
matrix with respect to the appropriate bases; namely, M 1":) (¢ o ¢) is found by computing

poy(uj) = Z ¥Vij Wi
i=l1

and putting the coefficients y;; down the j™ column of M ,f) (¢ o ). Next, compute the
matrices of ¢ and ¢ separately:

Y=Y apv, and @) =) Bpw;

p=1 i=1

so that MB(y) = (a,,;) and ME(p) = (Bip)-
Using these coefficients we can find an expression for the y’s in terms of the a’s
and B’s as follows:

po¥u;) = ‘P(Zapjvp>
p=1

n
= Z opj (Vp)
p=1
m

n
= Zapj E Bipw;
P=l

i=1

n o om
E E apjﬁ,-pw,-.

p=1i=1

By interchanging the order of summation in the above double sum we see that y;;, which
is the coefficient of w; in the above expression, is

Yij = Zapjﬂip-
p=1
Computing the product of the matrices for ¢ and i (in that order) we obtain

(Bij)(@ij) = (8;j), where §&; = Zﬂipapj-
p=1
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By comparing the two sums above and using the commutativity of field multiplication,
we see thatforall i and j, y;; = §;;. This computation proves the following result:

Theorem 12. With notations as above, M;g (o) = Mg ((o)Mg (¥), i.e., with respect
to a compatible choice of bases, the product of the matrices representing the linear
transformations ¢ and y is the matrix representing the composite linear transformation

o

Corollary 13. Matrix multiplication is associative and distributive (whenever the di-
mensions are such as to make products defined). An n x n matrix A is nonsingular if
and only if it is invertible.

Proof: Let A, B and C be matrices such that the products (AB)C and A(BC) are
defined, and let S, T and R denote the associated linear transformations. By Theorem
12, the linear transformation corresponding to A B is the composite S o T so the linear
transformation corresponding to (AB)C is the composite (S o T) o R. Similarly, the
linear transformation corresponding to A(BC) is the composite S o (T o R). Since
function composition is associative, these two linear transformations are the same, and
so (AB)C = A(BC) by Theorem 10. The distributivity is proved similarly. Note also
that it is possible to prove these results by straightforward (albeit tedious) calculations
with matrices.

If A is invertible, then Ax = 0 implies x = A lAx = A710 = 0,50 A is
nonsingular. Conversely, if A is nonsingular, fix bases B, £ for V and let ¢ be the
linear transformation of V to itself represented by A with respect to these bases. By
Corollary 9, ¢ is an isomorphism of V to itself, hence has an inverse, ¢~!. Let B
be the matrix representing ¢! with respect to the bases £, B (note the order). Then
AB = ME(@)MB(9™) = ME(p 0 o™") = ME(1) = I. Similarly, BA = I so B is
the inverse of A.

Corollary 14.
(1) If Bis abasis of the n-dimensional space V, the map ¢ —> M g (¢) is aring and
a vector space isomorphism of Hom,(V, V) onto the space M, (F) of n x n
matrices with coefficients in F.
2) GL(V) = GL,(F) where dimV = n. In particular, if F is a finite field
the order of the finite group GL, (F) (which equals |[GL(V)|) is given by the
formula at the end of Section 1.

Proof: (1) We have already seen in Theorem 10 that this map is an isomorphism
of vector spaces over F. Corollary 13 shows that M, (F) is a ring under matrix multi-
plication, and then Theorem 12 shows that multiplication is preserved under this map,
hence it is also a ring isomorphism.

(2) This is immediate from (1) since a ring isomorphism sends units to units.

Definition. If A is anym x n matrix withrentries from F, the row rank (respectively,
column rank) of A is the maximal number of linearly independent rows (respectively,
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columns) of A (where the rows or columns of A are considered as vectors in affine
n-space, m-space, respectively).

The relation between the rank of a matrix and the rank of the associated linear
transformation is the following: the rank of ¢ as a linear transformation equals the
column rank of the matrix M, g (¢) (cf. the exercises). We shall also see that the row
rank and the column rank of any matrix are the same.

We now consider the relation of two matrices associated to the same linear transfor-
mation of a vector space to itself but with respect to two different choices of bases (cf.
the exercises for the general statement regarding a linear transformation from a vector
space V to another vector space W).

Definition. Two n x n matrices A and B are said to be similar if there is an invertible
(i.e., nonsingular) n x n matrix P such that P"!AP = B. Two linear transformations
¢ and V¥ from a vector space V to itself are said to be similar if there is a nonsingular
linear transformation & from V to V such that £ Lp& = .

Suppose B and £ are two bases of the same vector space V andletgp € Homg(V, V).
Let I be the identity map from V to V and let P = M, g (I) be its associated matrix
(in other words, write the elements of the basis £ in terms of the basis 3 — note the
order — and use the resulting coordinates for the columns of the matrix P). Note that
if B # € then P is not the identity matrix. Then P~'ME(¢)P = ME(p). If [v]g is
the n x 1 matrix of coordinates for v € V with respect to the basis 13, and similarly
[vlg is the n x 1 matrix of coordinates for v € V with respect to the basis £, then
[vls = P[v]e. The matrix P is called the transition or change of basis matrix from B
to £ and this similarity action on Mg () is called a change of basis. This shows that
the matrices associated to the same linear transformation with respect to two different
bases are similar.

Conversely, suppose A and B are n x n matrices similar by a nonsingular matrix P.
Let Bbea basis for the n-dimensional vector space V. Define the linear transformation
¢ of V (with basis B) to V (again with basis BB) by equation (3) using the given matrix
A ie.,

qp(vj) = Zaijvi.
i=1

Then A = Mg () by definition of ¢. Define a new basis £ of V by using the i
column of P for the coordinates of w; in terms of the basis B (so P = Mf (I) by
definition). Then B = P~1AP = P“M,’s3 (@P =M g (¢) is the matrix associated to
¢ with respect to the basis £. This shows that any two similar n x n matrices arise in
this fashion as the matrices representing the same linear transformation with respect to
two different choices of bases.

Note that change of basis for a linear transformation from V to itself is the same as
conjugation by some element of the group G L (V) of nonsingular linear transformations
of V to V. In particular, the relation “similarity” is an equivalence relation whose
equivalence classes are the orbits of G L(V) acting by conjugation on Homg(V, V). If
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¢ € GL(V) (i.e., ¢ is an invertible linear transformation), then the similarity class of
@ is none other than the conjugacy class of ¢ in the group GL(V).

Example
Let V = @3 and let ¢ be the linear transformation
ox,y,2) =OOx+4y+ 5z, —4x — 3z, —6x — 4y — 22), x,y,2€Q

from V to itself we considered in an earlier example. With respect to the standard basis,
B,b; =(1,0,0), b2 = (0,1, 0), b3 = (0,0, 1) we saw that the matrix A representing this
linear transformation is

9 4 5
A=ME@w=|-4 o0 -3|.

-6 —4 -2
Take now the basis, £, e; = (2,—1,-2), e = (1,0, —1), e3 = (3, -2, -2) for V (we
shall see that this is in fact a basis momentarily). Since
vle) =92,-1,-2)=4,-2,-4)=2-¢,+0-e2+0- €3
vEe)=9¢(1,0,-1)=4-1,-4)=1-e1+2-e2+0-e3
v(e3) =93, -2,-2)=(9,—6,—6) =0-1 +0-€e2+3- €3,

the matrix representing ¢ with respect to this basis is the matrix

210
B=ME@=|0 2 0].
0 0 3
Writing the elements of the basis £ in terms of the basis I3 we have
e} =2by — by — 2b3
e2=by — b3
e3 = 3by — 2by — 2b3

2 1 3 -2 -1 -2
so the matrix P = Mg(l) =\ -1 0 =2 ] withinverse P71 = 2 2 1
-2 -1 =2 1 0 1
conjugates A into B, i.e., P"1 AP = B, as can easily be checked. (Note incidentally that
since P is invertible this proves that £ is indeed a basis for V.)

We observe in passing that the matrix B representing this linear transformation ¢ is
much simpler than the matrix A representing ¢. The study of the simplest possible matrix
representing a given linear transformation (and which basis to choose to realize it) is the
study of canonical forms considered in the next chapter.

Linear Transformations on Tensor Products of Vector Spaces
For convenience we reiterate Corollaries 18 and 19 of Section 10.4 for the special case
of vector spaces.

Proposition 15. Let F be a subfield of the field K. If W is an m-dimensional vector
space over F with basis wy, ..., w,, then K ®¢ W is an m-dimensional vector space
over K with basis 1 ® wy,...,1® w,,.
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Proposition 16. Let V and W be finite dimensional vector spaces over the field F with
bases vy, ..., v, and wy, ..., w, respectively. Then V ® ¢ W is a vector space over F
of dimension nm with basis v; ® wj, 1 <i <nandl < j <m.

Remark: If v and w are nonzero elements of V and W, respectively, then it follows from
the proposition that v ® w is a nonzero element of V ® W, because we may always
build bases of V and W whose first basis vectors are v, w, respectively. In a tensor
product M ®@g N of two R-modules where R is not a field it is in general substantially
more difficult to determine when the tensor product m ® n of two nonzero elements is
Zero.

Now let V, W, X, Y be finite dimensional vector spaces over F and let
p: Vo> X and yv: WY
be linear transformations. We compute a matrix of the linear transformation
eQY: VW > XQRY.

Let By = {v1,...,v,} and B, = {wy, ..., w,} be (ordered) bases of V and W respec-
tively, and let £, = {x;,...,x,;} and & = {y1, ..., ys} be (ordered) bases of X and Y
respectively. Let B = {v; ® w;j} and £ = {x; ® y;} bethebasesof V@ Wand X ® Y
given by Proposition 16; we shall order these shortly. Suppose

o(v;) = zapixp and ¥ (w;) = Zﬁ 9iYq-

p=1 gq=1

(9 ® Y)(v; ® wj) = (p(vi)) ® (Y(w;))

= apx) ® O Byiva)
p=1 q=1

= Z Zapiﬂqj(xp ® yq)-

p=1 g=1

(11.8)

In view of the order of summation in (11.8) we order the basis £ into r ordered sets,
with the p® list being x, ® y1, X, ® 2, ..., X, ® ¥s, and similarly order the basis B.
Then equation (8) determines the column entries for the corresponding matrix of ¢ ® .
The resulting matrix M g (¢ ® V) is anr x n block matrix whose p, g block is the s x m
matrix o, ;M g; (). In other words, the matrix for ¢ ® i is obtained by taking the
matrix for ¢ and multiplying each entry by the matrix for ¥». Such matrices have a
name:

Definition. Let A = (;;) and B be r x n and s x m matrices, respectively, with
coefficients from any commutative ring. The Kronecker product or tensor product of
A and B, denoted by A ® B, is the rs X nm matrix consisting of an r x n block matrix
whose i, j block is the s x m matrix a;; B.

With this terminology we have
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Proposition 17. Letg : V — X and ¢ : W — Y be linear transformations of finite
dimensional vector spaces. Then the Kronecker product of matrices representing ¢ and
1 is a matrix representation of ¢ ® .

Example

Let V = X = R3, both with basis vy, v2, v3, and W = ¥ = R2, both with basis wy, ws.
Suppose ¢ : R3 — R3 is the linear transformation given by ¢(av; + bvy + cv3) =
cv; +2av2—3bvzand ¢ : R2 — R is the linear transformation given by ¢ (aw; +bw?) =
(a+ 3b)w; + (4b — 2a)w,. With respect to the chosen bases, the matrices for ¢ and ¢ are

0 01
2 00 and (_; 2)
0-30

respectively. Then with respect to the ordered basis

B={n1®wi, 1®uwz, »®wi, 12 @uwz, v3 w1, v3 ws)}

we have \ .
000 0! 13
00,0 0,-24
260 000
ME@®W=| 4510 o0l o0o0 |
00 '-3 =97 00
00! 6-12' 00

obtained (as indicated by the dashed lines) by multiplying the 2 x 2 matrix for i successively
by the entries in the matrix for ¢.

EXERCISES

1. Let V be the collection of polynomials with coefficients in QQ in the variable x of degree at
most 5. Determine the transition matrix from the basis 1, x, x2, ..., x> for V to the basis
Ll4x,14+x+x2,. . 14+x+x2+x3+x*+x5forV.

2. Let V be the vector space of the preceding exercise. Let ¢ = d/dx be the linear trans-
formation of V to itself given by usual differentiation of a polynomial with respect to x.
Determine the matrix of ¢ with respect to the two bases for V in the previous exercise.

3. Let V be the collection of polynomials with coefficients in F in the variable x of degree
at most n. Determine the transition matrix from the basis 1, x, x2, ..., x" for V to the
elements

Lx—2X.., =" x=2)"

where A is a fixed element of F. Conclude that these elements are a basis for V.

4. Let ¢ bethe linear transformation of R? to itself given by rotation counterclockwise around
the origin through an angle 6. Show that the matrix of ¢ with respect to the standard basis

forRZjs ( €8¢ —simo)
sinf cos@

5. Show that the m x n matrix A is nonsingular if and only if the linear transformation ¢ is a
nonsingular linear transformation from the n-dimensional space V to the m-dimensional
space W, where A = M g(q)), regardless of the choice of bases BB and €.
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6. Prove if ¢ € Homp(F", F™), and B, £ are the natural bases of F", F™ respectively, then
the range of ¢ equals the span of the set of columns of M g (¢). Deduce that the rank of ¢

(as a linear transformation) equals the column rank of M, g (p).
7. Prove that any two similar matrices have the same row rank and the same column rank.

8. Let V be an n-dimensional vector space over F and let ¢ be a linear transformation of the
vector space V to itself.

(a) Provethatif V has a basis consisting of eigenvectorsfor ¢ (cf. Exercise 8 of Section 1)
then the matrix representing ¢ with respect to this basis (for both domain and range)
is diagonal with the eigenvalues as diagonal entries.

(b) If A is the n x n matrix representing ¢ with respect to a given basis for V (for both
domain and range) prove that A is similar to a diagonal matrix if and only if V has a
basis of eigenvectors for ¢.

9. If W is a subspace of the vector space V stable under the linear transformation ¢ (i.e.,
@(W) € W), show that ¢ induces linear transformations ¢|w on W and ¢ on the quotient
vector space V/ W. If g| w and ¢ are nonsingular prove ¢ is nonsingular. Prove the converse
holds if V has finite dimension and give a counterexample with V infinite dimensional.

10. Let V be an n-dimensional vector space and let ¢ be a linear transformation of V to itself.
Suppose W is a subspace of V of dimension m that is stable under ¢.
(a) Prove that there is a basis for V with respect to which the matrix for ¢ is of the form

(4 ¢)

where A is an m x m matrix, B is anm x (n —m) matrix and C is an (n —m) x (n —m)
matrix (such a matrix is called block upper triangular).

(b) Prove that if there is a subspace W’ invariant under ¢ so that V. = W & W’ decomposes
as a direct sum then the bases for W and W’ give a basis for V with respect to which
the matrix for ¢ is block diagonal:

A 0
0 C

where A is an m x m matrix and C is an (n — m) x (n — m) matrix.

(c) Prove conversely that if there is a basis for V with respect to which ¢ is block diagonal
as in (b) then there are g-invariant subspaces W and W’ of dimensions m and n — m,
respectively, with V. = W & W'.

11. Let ¢ be a linear transformation from the finite dimensional vector space V to itself such

that 92 = ¢.

(a) Prove that image ¢ Nkerg = 0.

(b) Prove that V = image ¢ @ ker ¢.

(c) Prove that there is a basis of V such that the matrix of ¢ with respect to this basis is
a diagonal matrix whose entries are all 0 or 1.

A linear transformation ¢ satisfying ¢? = ¢ is called an idempotent linear transformation.
This exercise proves that idempotent linear transformations are simply projections onto
some subspace.

12. Let V = R2, vy; = (1, 0), v2 = (0, 1), so that vy, v; are a basis for V. Let ¢ be the linear

transformation of V to itself whose matrix with respect to this basis is (2) é . Prove
that if W is the subspace generated by v; then W is stable under the action of ¢. Prove

that there is no subspace W’ invariant under ¢ sothat V. =W & W'.
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13. Let V be a vector space of dimension n and let W be a vector space of dimension m over
a field F. Suppose A is the m x n matrix representing a linear transformation ¢ from V to
W with respect to the bases B for V and &) for W. Suppose similarly that B is the m x n
matrix representing ¢ with respect to the bases B, for V and £, for W. Let P = M gz' )

where I denotes the identity map from V to V, and let Q = Mgzl (I) where 1 denotes the

identity map from W to W. Prove that 0~ = Mgl- (I) and that Q"'AP = B, giving
the general relation between matrices representing the same linear transformation but with
respect to different choices of bases.

The following exercises recall the Gauss—Jordan elimination process. This is one of the fastest
computational methods for the solution of a number of problems involving vector spaces —
solving systems oflinear equations, determining inverses of matrices, computing determinants,
determining the span of a set of vectors, determining linear independence of a set of vectors
etc.

Consider the system of m linear equations

anxit+apx+...+anxp =1
aix1 +apx2+...+ayux, =2

(114)
am1xX1 +amax2 + ...+ Gunxp = Cmy
in the n unknowns x1, x2, ..., x, wherea;j, ¢;,i =1,2,...,m, j =1,2,...,n are elements
of the field F. Associated to this system is the coefficient matrix:
a1 ap ... aup
a1 ayp ... ax
A= . .
ami am?2 <e. Qmn )
and the augmented matrix:
al a2 ... AQain c1
ay axp ... ax | €2
(AlC)= . .
aml Qm2 -.. Qmn Cm

(the term augmented refers to the presence of the column matrix C = (c;) in addition to the
coefficient matrix A = (a;j) ). The set of solutions in F of this system of equations is not
altered if we perform any of the following three operations:

(1) interchange any two equations
(2) add a multiple of one equation to another
(3) multiply any equation by a nonzero element from F,

which correspond to the following three elementary row operations on the augmented matrix:

(1) interchange any two rows
(2) add a multiple of one row to another
(3) multiply any row by a unit in F, i.e., by any nonzero element in F.

If a matrix A can be transformed into a matrix C by a series of elementary row operations then
A is said to be row reduced to C.
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14. Prove that if A can be row reduced to C then C can be row reduced to A. Prove that the
relation “A ~ C if and only if A can be row reduced to C” is an equivalence relation.
[Observe that the elementary row operations are reversible.]

Matrices lying in the same equivalence class under this equivalence relation are said to be row
equivalent.

15. Prove that the row rank of two row equivalent matrices is the same. [It suffices to prove
this for two matrices differing by an elementary row operation.]

An m x n matrix is said to be in reduced row echelon form if

(a) thefirstnonzero entry a;;, inrow i is 1 and all other entries in the corresponding j{h column
are zero, and

(b) j1 < j2 < ... < jr wherer is the number of nonzero rows, i.e., the number of initial zeros
in each row is strictly increasing (hence the term echelon).
An augmented matrix (A | C) is said to be in reduced row echelon form if its coefficient
matrix A is in reduced row echelon form. For example, the following two matrices are in
reduced row echelon form:

10 570 3 0

01 -110 -4 |-1 01 -10 0
00 001 6| 1 00 017 2
00 00 |3

00 O0O0O0O O 0

(with j; = 1, jo = 2, j3 = 5 for the first mawix and j; = 2, j, = 4 for the second matrix).
The first nonzero entry in any given row of the coefficient matrix of a reduced row echelon
augmented matrix (in position (i, j;) by definition) is sometimes referred to as a pivotal element
(so the pivotal elements in the first matrix are in positions (1,1), (2,2) and (3,5) and the pivotal
elements in the second matrix are in positions (1,2) and (2,4)). The columns containing pivotal
elements will be called pivoral columns and the columns of the coefficient matrix not containing
pivotal elements will be called nonpivotal.

16. Prove by induction that any augmented matrix can be put in reduced row echelon form by
a series of elementary row operations.

17. Let A and C be two matrices in reduced row echelon form. Prove that if A and C are row
equivalent then A = C.

18. Prove that the row rank of a matrix in reduced row echelon form is the number of nonzero
TOWS. '

19. Prove that the reduced row echelon forms of the matrices
1 1 4 8§ 0 -1 -1

1 23 90 -5 -2 O S I
0 22 21 14| 3 o el

1 41 11 0 -13 —4
are the two matrices preceding Exercise 16.
The point of the reduced row echelon form is that the corresponding system of linear equations

is in a particularly simple form, from which the solutions to the system AX = C in (4) can be
determined immediately:

20. (Solving Systems of Linear Equations) Let (A’ | C’) be the reduced row echelon form of
the augmented matrix (A | C). The number of zero rows of A’ is clearly at least as great
as the number of zero rows of (A’ | C’).
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(a) Prove that if the number of zero rows of A’ is strictly larger than the number of zero
rows of (A’ | C’) then there are no solutions to AX = C.

By (a) we may assume that A’ and (A’ | C’) have the same number, r, of nonzero rows
(son=>r).

(b) Prove that if r = n then there is precisely one solution to the system of equations
AX =C.

(c) Provethatif r < n thenthere are infinitely many solutions to the system of equations
AX = C. Prove in fact that the values of the n — r variables corresponding to the
nonpivotal columns of (A’ | C’) can be chosen arbitrarily and that the remaining
r variables corresponding to the pivotal columns of (A’ | C’) are then determined

uniquely.
21. Determine the solutions of the following systems of equations:
(a)
—3x+3y+z = 5
x—y = 0
2x — 2y = -3
(b)
X — 2y+ z = 5
x— 4y 6z = 10
4x—1ly + 11z = 12
(©
x—=2y+ z = 5
y—2z = 17
2x — 3y = 27
@
x+ y—3z4+2u = 2
3x-2y+52+ u =1
6x+ y—4z+3u = 7
2x + 2y — 62 = 4
(e
x+ y+4z+ 8u - w = -1
x+2y+3z+ u - Sw = -2
—2y4+2z— 2u+v+ 14w = 3
x+4y+ z+11u - 1Bw = —4

22. Suppose A and B are two row equivalent m x n matrices.
(a) Prove that the set
X1

x2
X =

Xn

of solutions to the homogeneous linear equations AX = 0 as in equation (4) above
are the same as the set of solutions to the homogeneous linear equations BX = 0. [It
suffices to prove this for two matrices differing by an elementary row operation.]

(b) Prove that any linear dependence relation satisfied by the columns of A viewed as
vectors in F™ is also satisfied by the columns of B.
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23.

24.

25.

26.

27.

(c) Conclude from (b) that the number of linearly independent columns of A is the same
as the number of linearly independent columns of B.

Let A’ be a matrix in reduced row echelon form.

(a) Prove that the nonzero rows of A’ are linearly independent. Prove that the pivotal
columns of A’ are linearly independent and that the nonpivotal columns of A’ are
linearly dependent on the pivotal columns. (Note the role the pivotal elements play.)

(b) Prove that the number of linearly independent columns of a matrix in reduced row
echelon form is the same as the number of linearly independent rows, i.e., the row
rank and the column rank of such a matrix are the same.

Use the previous two exercises and Exercise 15 above to prove in general that the row rank
and the column rank of a matrix are the same.

(Computing Inverses of Matrices) Let A be an n x n matrix.
(a) Show that A has an inverse matrix B with columns By, B,, ..., B, if and only if the
systems of equations:

1 0 0
1 0
ABy=|:]|, ABp=]:]. .... AB,=
0 0 0
0 0 1
have solutions.
(b) Prove that A has an inverse if and only if A is row equivalent to the n x n identity
matrix.

(c) Provethat A has aninverse B if and only if the augmented matrix (A | I) can be row
reduced to the augmented matrix (I | B) where I is the n x n identity matrix.

Determine the inverses of the following matrices using row reduction:

P RN
A= 7 1 3 B = 2 0
1 1

1 0 0 0

0

(Computing Spans, Linear Independence and Linear Dependencies in Vector Spaces) Let

V be an m-dimensional vector space with basis e, ez, ..., e, and let vy, v, ..., v, be

vectorsin V. Let A be the m x n matrix whose columns are the coordinates of the vectors

v; (with respect to the basis ey, €3, . .., e,;) and let A’ be the reduced row echelon form of

A.

(a) Let B be any matrix row equivalent to A. Let wy, wy, ..., w, be the vectors whose
coordinates (with respect to the basis ey, e, . . ., €,,) are the columns of B. Prove that
any linear relation

xivp+xv 4.+ X0, =0 (11.5)

satisfied by vy, v2, ..., vy, is also satisfied when v; is replaced by w;,i =1,2,...,n.

(b) Prove that the vectors whose coordinates are given by the pivotal columns of A’
are linearly independent and that the vectors whose coordinates are given by the
nonpivotal columns of A’ are linearly dependent on these.

(c) (Determining Linear Independence of Vectors) Prove that the vectors vy, v2, ..., Un
are linearly independent if and only if A’ has n nonzero rows (i.e., has rank n).

(d) (Determining Linear Dependencies of Vectors) By (c), the vectors vy, v2, . .., U, are
linearly dependent if and only if A’ has nonpivotal columns. The solutions to (5)
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defining linear dependence relations among vi, v2, ..., v, are given by the linear
equations defined by A’. Show that each of the variables x1, x2, ..., x, in (5) corre-
sponding to the nonpivotal columns of A’ can be prescribed arbitrarily and the values
of the remaining variables are then uniquely determined to give a linear dependence
relation among v;, v2, ..., v, asin (5).

(e) (Determining the Span of a Set of Vectors) Prove that the subspace W spanned by
v1, V2, ..., Uy has dimension r where r is the number of nonzero rows of A’ and that
a basis for W is given by the original vectors vj, (i = 1,2, ..., r) corresponding to
the pivotal columns of A’.

28. Let V = R’ with the standard basis and consider the vectors
n=0,13-2,3), 12=(0,10-1,0), v3=(2,3,6,-5,6)
vu=1(031,-31), vs=(2,-1,—-1,-1,-1).
(a) Show that the reduced row echelon form of the matrix

1 o 2 0 2

1 1 3 3 -1

A= 3 0 6 1 -1
-2 -1 -5 -3 -1

3 0 6 1 -1

whose columns are the coordinates of vy, v2, v3, v4, v5 is the matrix

1 02 0 2
011 0 18
A=]000 1 -7
0000 O
00O0O0 O

where the 1%, 274 and 4% columns are pivotal and the remaining two are nonpivotal.
(b) Conclude that these vectors are linearly dependent, that the subspace W spanned by
v1, v2, U3, U4, U5 is 3-dimensional and that the vectors

n=00,13-2,3), v»=(0,1,0,-1,00 and v4=(0,3,1,-3,1)

are a basis for W.
(c) Conclude from (a) that the coefficients xj, x2, x3. x4, x5 of any linear relation

x1v1 + X202 + x3v3 + x4v4 + x505 =0
satisfied by vy, v2, v3, vs4, v5 are given by the equations

x] +2x3 + 2x5=0
x2+ x3 + 18x5=0
x4 — Txs=0.

Deduce that the 3™ and 5% variables, namely x3 and x5, corresponding to the non-
pivotal columns of A’, can be prescribed arbitrarily and the remaining variables are
then uniquely determined as:

x] = —2x3 —2x5

x3 = —x3 — 18x5

x4 = Txs
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to give all the linear dependence relations satisfied by vi1, v2, v3, v4, v5. In particular
show that
=2y —vy+v3=0

and
—2v1 — 18y +Tvg+vs =0

corresponding to (x3 = 1, x5 = 0) and (x3 = 0, x5 = 1), respectively.

29. For each exercise below, determine whether the given vectors in R4 are linearly inde-
pendent. If they are linearly dependent, determine an explicit linear dependence among
them.

(a) (11 _4’ 3v 0)1 (0’ _1v41 _3), (1, —1, 1: —1)’ (2, 2; _ly _3)'
() (1,-2,4,1),(2,-3,9,-1),(1,0,6,-5),(2,-5,7,9).

© 1,-2,0,1),(2,-2,0,0),(-1,3,0,-2),(-2,1,0, 1).
(d) (0; 1, 1; 0), (1’ 0’ 11 1)’ (2’ 2' 21 O)s (0- _1' 1* 1)-

30. For each exercise below, determine the subspace spanned in R* by the given vectors and

give a basis for this subspace.

@ (1,-2,5,3),2,3,1,-4), (3,8, -3, -9).

(b) (2,-5,3,0),(0,-2,5,-3),(1, -1, 1, -1), (-3,2, -1,2).

© (1,-2,0,1),(2,-2,0,0),(-1,3,0,-2),(-2,1,0,1).

d) (1,1,0,-1),(1,2,3,0),(2.3,3,-1),(1,2,2,-2),(2,3,2,-3), (1, 3,4, -3).

31. (Computing the Image and Kernel of a Linear Transformation) Let V be an n-dimensional
vector space with basis e), e, ..., e, and let W be an m-dimensional vector space with
basis f1, f2, ..., fm- Let ¢ be a linear transformation from V to W and let A be the
corresponding m x n matrix with respect to these bases: A = (a;;) where

m
(p(ej):zaijf,-, ji=12,...,n,
i=l1
i.e., the columnsof A are the coordinatesofthe vectors ¢ (ey), ¢(e2), . - . , ¢(e,) Withrespect
to the basis fi, f2,..., fin of W. Let A’ be the reduced row echelon form of A.
(@) (Determining the Image of a Linear Transformation) Prove that the image ¢(V) of
V under ¢ has dimension r where r is the number of nonzero rows of A’ and that a

basis for ¢(V) is given by the vectors ¢(ej;) (i = 1,2,...,r), i.e, the columns of
A corresponding to the pivotal columns of A’ give the coordinates of a basis for the
image of ¢.

(b) (Determining the Kernel of a Linear Transformation) The elements in the kerel of
¢ are the vectors in V whose coordinates (x1, x2, . .., X,) with respect to the basis
e1, ez, ..., ey, satisfy the equation

x1
x2
Al . | =0,
Xn
and the solutions x, x2, . . ., X, to this system of linear equations are determined by

the matrix A’.

(i) Prove that ¢ is injective if and only if A’ has n nonzero rows (i.e., has rank n).

(ii) By (i), the kemnel of ¢ is nontrivial if and only if A’ has nonpivotal columns. Show that
each of the variables x;, x3, ..., x, above corresponding to the nonpivotal columns
of A’ can be prescribed arbitrarily and the values of the remaining variables are then
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uniquely determined to give an element xje1 + x2€2 + ... + x,e, in the kernel of
¢. In particular, show that the coordinates of a basis for the kernel are obtained
by successively setting one nonpivotal variable equal to 1 and all other nonpivotal
variables to O and solving for the remaining pivotal variables. Conclude that the
kernel of ¢ has dimension n — r where r is the rank of A.

32. Let V = R? and W = R* with the standard bases. Let ¢ be the linear transformation
¢ : V —> W defined by
ox,y,z,u,v) = (x+2y+3z+4u+4v, 2x—4y+2v, x+2y+u—2v,x +2y —v).
(a) Prove that the matrix A corresponding to ¢ and these bases is

1 2 3 4 4
-2 -4 00 2
1 2 01 =2
1 2 0 0 -1

and that the reduced row echelon matrix A’ row equivalent to A is

A=

1200 -1
, o010 3
A=lo00 1 -1
0000 0

where the 1%, 3" and 4% columns are pivotal and the remaining two are nonpivotal.
(b) Conclude that the image of ¢ is 3-dimensional and that the image of the 1%, 3™ and
4t basis elements of V, namely, (1, -2, 1, 1), (3,0, 0, 0) and (4, 0, 1, 0) give a basis
for the image (V) of V.
(c) Conclude from (a) that the elements in the kernel of ¢ are the vectors (x, y, z, 4, v)
satisfying the equations

x + 2y — v=0
Z 4+3v=0
u— v=0.

Deduce that the 2" and 5'" variables, namely y and v, corresponding to the nonpivotal
columns of A’ can be prescribed arbitrarily and the remaining variables are then
uniquely determined as

x=-2y+v
z=-3v
u=nu.

Show that (-2, 1, 0,0, 0) and (1, 0, —3, 1, 1) give a basis for the 2-dimensional kernel
of ¢, corresponding to (y = 1, v = 0) and (y = 0, v = 1), respectively.

33. Let ¢ be the linear transformation from R to itself defined by the matrix

1 -1 0 3
-1 2 1 41
A=l_1 1 o -3

1 2 -1 1

with respect to the standard basis for R*. Determine a basis for the image and for the
kernel of ¢.
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34.

3s.

36.

37.

39.

11.

Let ¢ be the linear transformation ¢ : R* — R? such that

¢((1,0,0,0)) = (1, -1) v((1,-1,0,0) = (0,0
e(1,-1,1,0) = (1,-1) v(1,-1,1,-1)) = (0, 0).
Determine a basis for the image and for the kernel of ¢.

Let V be the set of all 2 x 2 matrices with real entries and let ¢ : V — R be the map
defined by sending a matrix A € V to the sum of the diagonal entries of A (the trace of

A).
1 0 01 00 00
0 0/’ 0 0/’ 1 0)° 01
is a basis for V.

(a) Show that
(b) Prove that ¢ is a linear transformation and determine the matrix of ¢ with respect to
the basis in (a) for V. Determine the dimension of and a basis for the kernel of ¢.

Let V be the 6-dimensional vector space over Q consisting of the polynomials in the
variable x of degree at most 5. Let ¢ be the map of V to itself defined by ¢(f) =
x2 f" —6xf’ + 12f, where f” denotes the usual second derivative (with respect to x) of
the polynomial f € V and f’ similarly denotes the usual first derivative.

(a) Prove that ¢ is a linear transformation of V to itself.

(b) Determine a basis for the image and for the kernel of ¢.

Let V be the 7-dimensional vector space over the field F consisting of the polynomials in
the variable x of degree at most 6. Let ¢ be the linear transformation of V to itself defined
by ¢(f) = f’, where f’ denotes the usual derivative (with respect to x) of the polynomial
f € V. For each of the fields below, determine a basis for the image and for the kernel of

@:

@ F=R

(b) F = [, the finite field of 2 elements (note that, for example, (x2y = 2x = 0 over
this field)

(c) F=I3

d) F=Fs.

. Let A and B be square matrices. Prove that the trace of their Kronecker product is the

product of their traces: tr (A ® B) = tr (A) tr (B). (Recall that the trace of a square matrix
is the sum of its diagonal entries.)

Let F be asubfieldof K andlety : V — W bealineartransformation of finite dimensional

vector spaces over F.

(a) Prove that 1 ® ¢ is a K—linear transformation from the vector spaces K ®  V to
K ®F W over K. (Here 1 denotes the identity map from K to itself.)

() Let B = {vy,...,v,} and £ = {wy,..., w,} be bases of V and W respectively.
Prove that the matrix of 1 ® i with respect to the bases {1 ® v;,...,1 ® v,} and
{1® wy,...,1® w,} is the same as the matrix of y with respect to B and £.

3 DUAL VECTOR SPACES

Definition.

@

For V any vector space over F let V* = Homg(V, F) be the space of linear
transformations from V to F, called the dual space of V. Elements of V* are
called linear functionals.
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(2) If B={v1, vy, ..., vy} is a basis of the finite dimensional space V, define v} € V*

foreachi € {1, 2,..., n} by its action on the basis B:
100 {1’ o) =i (11.6)
v, (V) = n. .
A TS A
Proposition 18. Withnotations as above, {v], v3, ..., v} isabasis of V*. Inparticular,

if V is finite dimensional then V* has the same dimension as V.

Proof: Observe that since V is finite dimensional, dim V* = dimHomg(V, F) =
dim V = n (Corollary 11), so since there are n of the v}’s it suffices to prove that they
are linearly independent. If

alvr +azvz’z' +--- +anv: =0 inHom,:(V, F),

then applying this element to v; and using equation (6) above we obtain ¢; = 0. Since
i is arbitrary these elements are linearly independent.

Definition. Thebasis {v], v3, ..., v;}of V*iscalled the dual basisto {vy, va, ..., Us}.

The exercises later show that if V is infinite dimensional it is always true that
dim V < dim V*. For spaces of arbitrary dimension the space V* is the “algebraic”
dual space to V. If V has some additional structure, for example a continuous structure
(i.e., a topology), then one may define other types of dual spaces (e.g., the continuous
dual of V, defined by requiring the linear functionals to be continuous maps). One has
to be careful when reading other works (particularly analysis books) to ascertain what
qualifiers are implicit in the use of the terms “dual space” and “linear functional.”

Example
Let [a, b] be a closed interval in R and let V be the real vector space of all continuous
functions f : [a, b] - R. Ifa < b, V is infinite dimensional. For each g € V the function
¢g : V — R defined by ¢ (f) = fab f(@®)g(t)dt is a linear functional on V.

Definition. The dual of V*, namely V**, is called the double dual or second dual of
V.

Note that for a finite dimensional space V, dim V = dim V* and also dim V* =
dim V**, hence V and V** are isomorphic vector spaces. For infinite dimensional
spaces dim V < dim V** (cf. the exercises) so V and V** cannot be isomorphic. In the
case of finite dimensional spaces there is a natural, i.e., basis independent or coordinate
free way of exhibiting the isomorphism between a vector space and its second dual.
The basic idea, in a more general setting, is as follows: if X is any set and S is any set
of functions of X into the field F, we normally think of choosing or fixing an f € S
and computing f(x) as x ranges over all of X. Alternatively, we could think of fixing
a point x in X and computing f(x) as f ranges over all of S. The latter process, called
evaluation at x shows that for each x € X there is a function E, : S — F defined by
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E,(f) = f(x) (i.e., evaluate f at x). This gives a map x — E, of X into the set of
F-valued functions on S. If S “separates points” in the sense that for distinct points
x and y of X there is some f € S such that f(x) # f(y), then the map x > E,
is injective. The proof of the next lemma applies this “role reversal” process to the
situation where X = V and § = V*, proves E, is a linear F-valued function on S,
that is, E, belongs to the dual space of V*, and proves the map x +— E, is a linear
transformation from V into V**. Note that throughout this process there is no mention
of the word “basis” (although it is convenient to know the dimension of V** — a fact
we established by picking bases). In particular, the proof does not start with the familiar
phrase “pick abasisof V ....”

Theorem 19. There is a natural injective linear transformation from V to V**. If V is
finite dimensional then this linear transformation is an isomorphism.

Proof: Let v € V. Define the map (evaluation at v)
E,:V*> F by E,(f) = f(v).

Then E,(f +ag) = (f +ag)(v) = f(v)+ag(v) = E,(f) +aE,(v),sothat E,isa
linear transformation from V* to F. Hence E, is an element of Homg(V*, F) = V**.
This defines a natural map

o: Vo> V™ by ¢(v) = E,.
The map ¢ is a linear map, as follows: for v, w € Vanda € F,
Epton(f) = f(v+aw) = f(v) + af (w) = E,(f) + ¢Ew(f)
for every f € V*, and so
(v +aw) = Eviaw = Ey + ¢Ey = ¢(v) + ap(w).

To see that ¢ is injective let v be any nonzero vector in V. By the Building Up Lemma
there is a basis B3 containing v. Let f be the linear transformation from V to F
defined by sending v to 1 and every element of B — {v} to zero. Then f € V* and
E,(f) = f(v) = 1. Thus ¢(v) = E, is not zero in V**. This proves kerp = 0, i.e., ¢
is injective.

If V has finite dimension n then by Proposition 18, V* and hence also V** has
dimension n. In this case ¢ is an injective linear transformation from V to a finite
dimensional vector space of the same dimension, hence is an isomorphism.

Let V, W be finite dimensional vector spaces over F with bases 3, £, respectively
and let B*, £* be the dual bases. Fix some ¢ € Homg(V, W). Then for each f € W*,
the composite f o ¢ is a linear transformation from V to F, thatis f o ¢ € V*. Thus
the map f > f og defines a function from W* to V*. We denote this induced function
on dual spaces by ¢*.
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Theorem 20. With notations as above, ¢* is a linear transformation from W* to V* and
M f: (¢™) is the transpose of the matrix M, g (¢) (recall that the transpose of the matrix
(a;j) is the matrix (aj;)).

Proof: The map ¢* is linear because (f + ag) o = (f o ¢) + a(g o ¢). The
equations which define ¢ are (from its matrix)

m
o(vj) = Zaijwi 1<j<n.

i=1

To compute the matrix for ¢*, observe that by the definitions of ¢* and w};

©" (W) () = (wy 0 P)(vj) = wZ(Za,-jwi) = ;.

i=l1
Also
(Zakivf)(vj) = o
i=1

for all j. This shows that the two linear functionals below agree on a basis of V, hence
they are the same element of V*:

n
@ (wp) = Zakiv?-
i=1

This determines the matrix for ¢* with respect to the bases £* and B* as the transpose
of the matrix for ¢.

Corollary 21. For any matrix A, the row rank of A equals the column rank of A.

Proof: Letg : V — W be a linear transformation whose matrix with respect to
some fixed bases of V and W is A. By Theorem 20 the matrix of ¢* : W* — V* with
respect to the dual bases is the transpose of A. The column rank of A is the rank of ¢
and the row rank of A (= the column rank of the transpose of A) is the rank of ¢* (cf.
Exercise 6 of Section 2). It therefore suffices to show that ¢ and ¢* have the same rank.
Now

fekerg* & ¢*(f) =04 fop()=0, forallveV
& @(V) Cker f < f € Ann(p(V)),
where Ann(S) is the annihilator of S described in Exercise 3 below. Thus Ann(¢(V)) =
ker ¢*. By Exercise 3, dim Ann(¢(V)) = dim W — dim ¢(V). By Corollary 8,

dim ker¢* = dim W* — dim ¢*(W?*). Since W and W* have the same dimension,
dim ¢ (V) = dim ¢*(W*) as needed.
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EXERCISES

1. Let V be a finite dimensional vector space. Prove that the map ¢ + ¢* in Theorem 20
gives a ring isomorphism of End(V) with End(V*).

2. Let V be the collection of polynomials with coefficients in Q in the variable x of degree
atmost § with 1, x, x2, ..., x3 as basis. Prove that the following are elements of the dual
space of V and express them as linear combinations of the dual basis:

(@) E : V - Qdefined by E(p(x)) = p(3) (i.e., evaluation at x = 3).

(®) ¢ : V — Qdefined by p(p(x)) = [ p(t)ds.

(©) ¢ : V - Qdefined by ¢(p(x)) = fol t2p(t)dt.

(d) ¢ : V - Qdefinedby ¢(p(x)) = p’(5) where p’(x) denotes the usual derivative of
the polynomial p(x) with respect to x.

3. Let S be any subset of V* for some finite dimensional space V. Define Ann(S) = {v €
V| f(v) =0forall f € S}. (Ann(S) is called the annihilator of S in V).
(a) Prove that Ann(S) is a subspace of V.
(b) Let W; and W be subspaces of V*. Prove that Ann(W; + W>) = Ann(W;)NAnn(W2)
and Ann(W; N W2) = Ann(W;) + Ann(W2).
(c) Let W; and W, be subspaces of V*. Prove that W) = W, if and only if Ann(W;) =

Ann(W2).

(d) Prove that the annihilator of § is the same as the annihilator of the subspace of V*
spanned by S.

(e) Assume V is finite dimensional with basis vy, ..., v,. Prove thatif § = {v’l", ey v,’:}
for some k < n, then Ann(S) is the subspace spanned by {vg1, ..., v,).

(f) Assume V is finite dimensional. Prove that if W* is any subspace of V* then
dim Ann(W*) = dim V — dim W*.
4. If V is infinite dimensional with basis A, prove that A* = {v* | v € A} does not span V*.

5. If V is infinite dimensional with basis .4, prove that V* is isomorphic tothe direct product
of copies of F indexed by A. Deduce that dim V* > dim V. [Use Exercise 14, Section 1.]

11.4 DETERMINANTS

Although we shall be using the theory primarily for vector spaces over a field, the theory
of determinants can be developed with no extra effort over arbitrary commutative rings
with 1. Thusin this section R is any commutative ring with 1and V;, V3, ..., V,,, Vand
W are R-modules. For convenience we repeat the definition of multilinear functions
from Section 10.4.

Definition.
(1) Amapg : Vi x V5 x -+ x V,, > W is called multilinear if for each fixed i
and fixed elements v; € V;, j # i, the map

V,-—)W deﬁnedby xr—-)tp(v;,...,vi_l,x, v,-+1,...,v,,)

is an R-module homomorphism. If V; = V,i =1, 2, ..., n, then ¢ is called
an n-multilinear function on V, and if in addition W = R, ¢ is called an n-
multilinear form on V.
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(2) An n-multilinear function ¢ on V is called alternating if ¢(vy, v, ...,v,) =0
whenever v; = v;4) for somei € {1,2,...,n — 1} (i.e., ¢ is zero whenever
two consecutive arguments are equal). The function ¢ is called symmetric if
interchanging v; and v; for any i and j in (v1, v2, ..., U,) does not alter the
value of ¢ on this n-tuple.

When n = 2 (respectively, 3) one says ¢ is bilinear (respectively, trilinear) rather
than 2-multilinear (respectively, 3-multilinear). Also, when n is clear from the context
we shall simply say ¢ is multilinear.

Example

For any fixed m > O the usual dot product on V = R™ is a bilinear form (here the ring R
is the field of real numbers).

Proposition 22. Let ¢ be an n-multilinear alternating function on V. Then

M @(vr, .05 Vio1, Vig1, Vi Vig2, .25 Up) = —@(V1,02,...,0,) for any i €
{1.2,...,n—1}, i.e., the value of ¢ on an n-tuple is negated if two adjacent
components are interchanged.

(2) For each 0 € S, ©(Vo(1), Vo (2)s - - - » Vo)) = €(a)@(vy, V2, ..., V,), Where

€ (o) is the sign of the permutation o (cf. Section 3.5).
(3) Ifv; = v; forany pairofdistincti, j € {1,2,...,n}theng(v, v2,...,v,) =0.
(4) If v; is replaced by v; + avj in (vy, ..., v,) forany j # i and any @ € R, the
value of ¢ on this n-tuple is not changed.

Proof: (1) Let ¢r(x, y) be the function ¢ with variable entries x and y in positions
i and i + 1 respectively and fixed entries v; in position j, for all other j. Thus (1) is the
same as showing ¥ (y, x) = —{(x, y). Since ¢ is alternating ¥ (x + y, x +y) = 0.
Expanding x + y in each variable in turn gives ' (x + y, x +y) = ¢ (x, x) + ¥ (x, y) +
¥ (y, x) + ¥(y, y). Again, by the alternating property of ¢, the first and last terms on
the right hand side of the latter equation are zero. Thus 0 = ¥ (x, y) + ¥ (y, x), which
gives (1).

(2) Every permutation can be written as a product of transpositions (cf. Section
3.5). Furthermore, every transposition may be written as a product of transpositions
which interchange two successive integers (cf. Exercise 3 of Section 3.5). Thus every
permutation o can be written as 1 - - - T,,, Where 7 is a transposition interchanging two
successive integers, for all k. It follows from m applications of (1) that

©(Vo(1), Vo2)s - - - » Va(n)) = €(Tp) - - - €(T1)@(vy, V2, - .., Up).

Finally, since € is a homomorphism into the abelian group %1 (so the order of the factors
+1 does not matter), €(ty) - - - €(7,,) = €(71 - - - T,y) = €(0). This proves (2).

(3) Choose o to be any permutation which fixes i and moves j toi + 1. Thus
(Vo 1)» Yo(2)s - - - » Vo (n)) has two equal adjacent components so ¢ is zero on this n-tuple.
By (2), ¢(vo1), Yo(2)s - - - » Vo(n)) = E@(V1, V2, ..., v,). This implies (3).

(4) This follows immediately from (3) on expanding by linearity in the i position.
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Proposition 23. Assume ¢ is an n-multilinear alternating function on V and that for
some vi, v2, ..., U, and wy, w2, ..., w, € V and some ¢;; € R we have

w) = o1V + o212+ -+ Oy Uy

Wy = 2V + Q2V2 + -+ - + 2y

Wy = A1V + 02pV2 + -+ - + Oty

(we have purposely written the indices of the ¢;; in “column format™). Then

o(wy, wy, ..., wy) = Z €(0)1)1%6:2)2 * * * Qo) nP(V1, V2, ..., Up).
OE€ES,

Proof: 1If we expand ¢(w;, wa, ..., w,) by multilinearity we obtain a sum of n"
terms of the form o, 10,2 - . . @i n9(v;;, Viy, - - -, ;,), Where the indices iy, iz, .. ., in
each run over 1, 2, ..., n. By Proposition 22(3), ¢ is zero on the terms where two
or more of the i;’s are equal. Thus in this expansion we need only consider the
terms where iy, ..., i, are distinct. Such sequences are in bijective correspondence
with permutations in S,, so each nonzero term may be written as o, (1)10%:2)2 * -
%oy n®(Vo(1)s Yo(2)s - - - » Vo(m)), fOr some o € S,,. Applying (2) of the previous propo-
sition to each of these terms in the expansion of ¢ (w;, w2, . .., w,) gives the expression
in the proposition.

Definition. An n x n determinant function on R is any function

det: M,,(R) > R

that satisfies the following two axioms:
(1) detis an n-multilinear alternating form on R" (= V'), where the n-tuples are the
n columns of the matrices in M, ., (R)
(2) det() = 1, where [ is the n x n identity matrix.

On occasion we shall write det(A1, A, ..., A,) for det A, where Ay, A2, ..., A,
are the columns of A.

Theorem 24. There is a unique 7 x n determinant function on R and it can be computed
for any n x n matrix (;;) by the formula:

det(c;j) = Z €(0)as(1)1%2)2 * * - Xon)n-
cES,

Proof: Let Ay, A, ..., A, be the column vectors in a general n x n matrix (c;;).
We leave it as anexercise to check that the formula given in the statement of the theorem
does satisfy the axioms of a determinant function — this gives existence of a determinant
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function. To prove uniqueness let e; be the column n-tuple with 1 in position i and zeros
in all other positions. Then

Al =ane +oge2+---+ayey

Ay = aper +aper + - - + e,

A, = ajer +azer + - -+ appey.

By Proposition23,det A = zcres,. €(0) (1) 100(2) 2" Qo (n) n det(er, €2, . . ., €,). Since
by axiom (2) of a determinant function det(ey, €2, . . ., €,) = 1, the value of det A is as
claimed.

Corollary 25. The determinant is an n-multilinear function of the rows of M,,,,(R)
and for any n x n matrix A, det A = det(A"), where A’ is the transpose of A.

Proof: The first statement is an immediate consequence of the second, so it suffices
to prove that a matrix and its transpose have the same determinant. For A = («;;) one
calculates that

det A’ = Z €(0) 6 (1)%20(2) - - - Cno(n)-
og€Ss,
Each number from 1 to n appears exactly once among o (1), ..., o(n) so we may
rearrange the product @ ¢(1)024(2) - - - ¥no(n) 88 Uo-1(1)1¥-1(2)2 - - - Qo= (n) n- Also, the
homomorphism € takes values in {31} so €(0) = €(o !). Thus the sum for det A* may
be rewritten as
Z G(G_l)aa—l(l) 106—1(2)2 c e Qo=-l(n)p-

o€s,
The latter sum is over all permutations, so the index o~! may be replaced by o. The
resulting expression is the sum for det A. This completes the proof.
Theorem 26. (Cramer’s Rule) If Ay, A,, ..., A, are the columns of an n x n matrix
Aand B = 1A, + fhAz+---+ B, A, forsome By, ..., B, € R, then
Bidet A =det(Ay, ..., Ai_1, B, Ait1, .-, Ap).

Proof: This follows immediately from Proposition 22(3) on replacing the given
expression for B in the i™ position and expanding by multilinearity in that position.

Corollary 27. If R is an integral domain, then det A = 0 for A € M, (R) if and only
if the columns of A are R-linearly dependent as elements of the free R-module of rank
n. Also, det A = 0 if and only if the rows of A are R-linearly dependent.

Proof: Since det A = det A’ the first sentence implies the second.
Assume first that the columns of A are linearly dependent and

0=p81A1+ BAr+---+ B A,
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is a dependence relation on the columns of A with, say, §; # 0. By Cramer’s Rule,
Bidet A = 0. Since R is an integral domain and 8; # 0, det A = 0.

Conversely, assume the columns of A are independent. Consider the integral do-
main R as embedded in its quotient field F so that M, ,(R) may be considered as
a subring of M, ,(F) (and note that the determinant function on the subring is the
restriction of the determinant function from M,,,,(F)). The columns of A in this way
become elements of F". Any nonzero F -linear combination of the columns of A which
iszeroin F" gives, by multiplying the coefficients by a common denominator, a nonzero
R-linear dependence relation. The columns of A must therefore be independent vectors
in F". Since A has n columns, these form a basis of F". Thus there are elements B;;
of F such that for each i, the i basis vector e; in F" may be expressed as

e = B1iA1 + PrAz + - -+ BriAn.

The n x n identity matrix is the one whose columns are e, e, ..., e,. By Proposition
23 (with ¢ = det), the determinant of the identity matrix is some F-multiple of det A.
Since the determinant of the identity matrix is 1, det A cannot be zero. This completes
the proof.

Theorem 28. For matrices A, B € M, »,(R), det AB = (det A)(det B).

Proof: Let B = (i) and let Ay, A3, ..., A, bethe columns of A. Then C = AB
is the n x n matrix whose j™ column is Ci = Bi1jA1 + B2jAr + --- + ByjA,. By
Proposition 23 applied to the multilinear function det we obtain

det C = det(Cy,...,C,) = [ Z E(O’)ﬂa(l) 1ﬂ0(2)2 - ﬂg(n)n:l det(Aq, ..., Ap).

o€S,

The sum inside the brackets is the formula for det B, hence det C = (det B)(det A), as
required (R is commutative).

Definition. Let A = (¢;;) be ann x n matrix. Foreach i, j, let A;j be then—1 xn—1

matrix obtained from A by deleting its i ! row and j™ column (an n—1 x n—1 minor
of A). Then (—1)"t/ det(A;;) is called the ij cofactor of A.

Theorem 29. (The Cofactor Expansion Formula along the i row) If A = (v; j) is an
n x n matrix, then foreach fixed i € {1, 2, ..., n} the determinant of A can be computed
from the formula

det A = (=)o det Aip + (—1)' Pagpdet A + - - - + (= 1)+, det Ay,

Proof: For each A let D(A) be the element of R obtained from the cofactor expan-
sion formula described above. We prove that D satisfies the axioms of a determinant
function, hence is the determinant function. Proceed by induction on n. If n = 1,
D((a)) = a, forall 1 x 1 matrices (o) and the result holds. Assume therefore that
n > 2. To show that D is an alternating multilinear function of the columns, fix an
index k and consider the k™ column as varying and all other columns as fixed. If j # k,
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«;; does not depend on k and D(A;;) is linear in the k' column by induction. Also, as
the k" column varies linearly so does ., whereas D(A;;) remains unchanged (the kth
column has been deleted from A;;). Thus each term in the formula for D varies linearly
in the k™ column. This proves D is multilinear in the columns.

To prove D is alternating assume columns k and k 4+ 1 of A are equal. If j # k or
k + 1, the two equal columns of A become two equal columns in the matrix A;;. By
induction D(A;;) = 0. The formula for D therefore has at most two nonzero terms:
when j = k and when j = k + 1. The minor matrices A;; and A; 4 are identical and
¢ = o r+1. Then the two remaining terms in the expansion for D, (— Ditka;; D(Ai)
and (—1)"***lq; ;1 D(A;ir41) are equal and appear with opposite signs, hence they
cancel. Thus D(A) = 0 if A has two adjacent columns which are equal, i.e., D is
alternating.

Finally, it follows easily from the formula and induction that D(I) = 1, where [ is
the identity matrix. This completes the induction.

Theorem 30. (Cofactor Formula for the Inverse of a Matrix) Let A = («;;) be an
n x n matrix and let B be the transpose of its matrix of cofactors, i.e., B = (8;;), where
Bij = (—=1)"*+ det Aji,1 <1, j <n Then AB = BA = (det A)I. Moreover, det A is

1
is th
detAB is the

a unit in R if and only if A is a unit in M,,x, (R); in this case the matrix

inverse of A.

Proof: Thei, j entry of ABisa;181j +aizBrj + - - - + @in Bsj. By definition of the
entries of B this equals

it (—=) ' D(Aj) + @ia(=1)"2D(Ajp) + - - - + i (1) D(Aj).  (11.7)

Ifi = j, this is the cofactor expansion for det A along the i row. The diagonal entries
of AB are thus all equal to detA. If i # j, let A be the matrix A with the j® row
replaced by the i row, so det A = 0. By inspection Xl-k = Aj; and o = @y forevery
k € {1, 2, ..., n}. By making these substitutions in equation (7) foreachk = 1,2, ..., n
one sees that the i, j entryin A B equals @j; (—1)'+/ D(A;1)+- - - +&;n (—1)"+ D(4;»).
This expression is the cofactor expansion for det A along the j™ row. Since, as noted
above, det A = 0, this proves that all off diagonal terms of AB are zero, which proves
that AB = (det A)I.

It follows directly from the definition of B that the pair (A’, B*) satisfies the
same hypotheses as the pair (A, B). By what has already been shown it follows that
(BA)! = A'B' = (det A")I. Since det A* = det A and the transpose of a diagonal ma-
trix is itself, we obtain BA = (det A)I as well.

If d = det A is a unit in R, then d~! B is a matrix with entries in R whose product
with A (on either side) is the identity, i.e., A is a unit in M,,«,(R). Conversely, assume
that A is a unit in R with (2-sided) inverse matrix C. Since det C € R and

1 =det] = det AC = (det A)(det C) = (det C)(det A),

it follows that det A has a 2-sided inverse in R, as needed. This completes all parts of
the proof.
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EXERCISES

1. Formulate and prove the cofactor expansion formula along the j column of a square
matrix A.

2. Let Fbeafield and let Ay, Ay, ..., Ay be (column) vectors in F”. Form the matrix A
whose i column is A;. Prove that these vectors form a basis of F” if and only if det A # 0.

3. Let R be any commutative ring with 1, let V be an R-module and let x1, x3,...,x, € V.
Assume that for some A € M, »,,(R),
X1
Al 1 | = 0.
Xn

Prove that (det A)x; = 0, foralli € {1, 2,...,n}.

4. (Computing Determinants of Matrices) This exercise outlines the use of Gauss—Jordan
elimination (cf. the exercises in Section 2) to compute determinants. This is the most
efficient general procedure for computing large determinants. Let A be an n x n matrix.

(a) Prove that the elementary row operations have the following effect on determinants:

(i) interchanging two rows changes the sign of the determinant
(ii) adding a multiple of one row to another does not alter the determinant
(iii) multiplying any row by a nonzero element « from F multiplies the determinant
by u.

(b) Prove that det A is nonzero if and only if A is row equivalent to the n x n identity
matrix. Suppose A can be row reduced to the identity matrix using a total of s row
interchanges as in (i) and by multiplying rows by the nonzero elements u, u, ..., y
as in (iii). Prove thatdet A = (—=1)*(uquz ... u;)" L.

5. Compute the determinants of the following matrices using row reduction:

1 2 -4 4

5 4 -6
a=—20 2| B=|? 7 %3
34 2

0 1 -2 3

6. (Minkowski’s Criterion) Suppose A is an n x n matnx with real entries such that the
diagonal elements are all positive, the off-diagonal elements are all negative and the row
sums are all positive. Prove that det A # 0. [Consider the corresponding system of
equations AX = 0 and suppose there is a nontrivial solution (xy, ..., x,). If x; has the
largest absolute value show that the i equation leads to a contradiction.]

11.5 TENSOR ALGEBRAS, SYMMETRIC AND EXTERIOR ALGEBRAS

In this section R is any commutative ring with 1, and we assume the left and right
actions of R on each R-module are the same. We shall primarily be interested in the
special case when R = F is a field, but the basic constructions hold in general.
Suppose M is an R-module. When tensor products were first introduced in Section
10.4 we spoke heuristically of forming “products” m;m, of elements of M, and we
constructed a new module M ® M generated by such “products” m; @ m,. The “value”
of this product is not in M, so this does not give a ring structure on M itself. If, however,
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we iterate this by taking the “products” m;m;m3 and mym;m3my, and all finite sums of
such products, we can construct a ring containing M that is “universal” with respect to
rings containing M (and, more generally, with respect to homomorphic images of M),
as we now show.

For each integer k > 1, define

T*M) =M@ M®g---®r M (k factors),
andset 7°(M) = R. The elements of 7 “(M) are called k-tensors. Define

TM =RST' M ST M) T (M) - =P T* ().
=0

Every element of 7 (M) is a finite linear combination of k-tensors for various k > 0.
We identify M with 7' (M), so that M is an R-submodule of 7 (M).

Theorem 31. If M is any R-module over the commutative ring R then
(1) 7 (M) is an R-algebra containing M with multiplication defined by mapping

(ml®"'®mi)(mll®"'®m}):ml®"'®mi®m,1®"'®m}

and extended to sums via the distributive laws. With respect to this multiplica-
tion 7' (M)T/ (M) € T (M).

(2) (Universal Property) If A is any R-algebra and ¢ : M — A is an R-module
homomorphism, thenthereis aunique R-algebrahomomorphism @ : 7 (M) —
A such that @ |y, = ¢.

Proof: The map
MXMX"'XA{XMXMX---XI%—>'TT.+J'(M)

—

i factors J factors

defined by
(ml,---,mi,m'l,---,m})*—)m1®..-®mi®m'1®..-®m;-

is R-multilinear, so induces a bilinear map 7 (M) x 7/ (M) to T'+J (M) which is
easily checked to give a well defined multiplication satisfying (1) (cf. the proof of
Proposition 21 in Section 10.4). To prove (2), assume that ¢ : M — A is an R-algebra
homomorphism. Then

(my, my, ...,m) > @(m)e(my) ... p(my)

defines an R-multilinear map from M x - -- x M (k times) to A. This in turn induces a
unique R-module homomorphism @ from T*(M) to A (Corollary 16 of Section 10.4)
mapping m; ® . . . ® m; to the element on the right hand side above. It is easy to check
from the definition of the multiplication in (1) that the resulting uniquely defined map
@ : T (M) — A is an R-algebra homomorphism.
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Definition. The ring 7 (M) is called the tensor algebra of M.

Proposition 32. Let V be a finite dimensional vector space over the field F with basis
B ={vy,..., v,}. Then the k-tensors

U, Q0,0 -Qu;, withvij eB

are a vector space basis of 7%(V) over F (with the understanding that the basis vector
is the element 1 € F when k = 0). In particular, dim F(TH(V)) = nk.

Proof: This follows immediately from Proposition 16 of Section 2.

Theorem 31 and Proposition 32 show that the space 7 (V) may be regarded as the
noncommutative polynomial algebraover F in the (noncommuting) variables vy, . . ., v,.
The analogous result also holds for finitely generated free modules over any commuta-
tive ring (using Corollary 19 in Section 10.4).

Examples

(1) Let R = Z and let M = Q/Z. Then (Q/Z) ®z (Q/Z) = 0 (Example 4 following
Corollary 12 in Section 10.4). Thus 7 (Q/Z) = Z & (Q/Z), where addition is com-
ponentwise and the multiplication is given by (r, p)(s,g) = (rs,rq + sp). The ring
R/(x) of Exercise 4(d) in Section 9.3 is isomorphic to 7 (Q/Z).

2) Let R = Z and let M = Z/nZ. Then (Z/nZ) ®z (Z/nZ) = Z/nZ (Example 3
following Corollary 12 in Section 10.4). Thus 7/ (M) = M forall i > 0 and so
T(Z/nZ) = Z&(Z/nZ) & (Z/nZ) - --. It follows easily that 7 (Z/nZ) = Z[x]/(nx).

Since 7/ (M)T/ (M) € T+J (M), the tensor algebra 7 (M) has a natural “grading”
or “degree” structure reminiscent of a polynomial ring.

Definition.

(1) A ring S is called a graded ring if it is the direct sum of additive subgroups:
S=S®S1®S,®---suchthat §;S; C S;yj foralli, j > 0. The elements of
Sy are said to be homogeneous of degree k, and S; is called the homogeneous
component of S of degree k.

(2) Anideal I of the gradedring S is called a graded ideal if I = &2 ,(I N Sg).

(3) A ring homomorphism ¢ : § — T between two graded rings is called a
homomorphism of graded rings if it respects the grading structures on S and 7',
1e.,if o(S) C Tp fork=0,1,2,....

Note that SpSo € So, which implies that S is a subring of the graded ring S and
then S is an Sg-module. If Sy is in the center of S and it contains an identity of S, then
S is an Sp-algebra. Note also that the ideal [ is graded if whenever a sum iy, + - - - + i,
of homogeneous elements with distinct degrees ki, ..., k&, is in I then each of the
individual summands iy,, ..., i, is itself in 1.
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Example
The polynomial ring S = R[xy, x2, ..., x,] in n variables over the commutative ring R is
an example of a graded ring. Here So = R and the homogeneous component of degree k
is the subgroup of all R-linear combinations of monomials of degree k.

The ideal I generated by xi, ..., x, is a graded ideal: every polynomial with zero
constant term may be written uniquely as a sum of homogeneous polynomials of degree
k > 1, and each of these has zero constant term hence lies in /. More generally, an ideal is
a graded ideal if and only if it can be generated by homogeneous polynomials (cf. Exercise
17 in Section 9.1).

Not every ideal of a graded ring need be a graded ideal. For example in the graded
ring Z[x] the principal ideal J generated by 1 + x is not graded: 1+ x € Jand 1 ¢ J so
1 4+ x cannot be written as a sum of homogeneous polynomials each of which belongs to
J.

The next result shows that quotients of graded rings by graded ideals are again
graded rings.

Proposition 33. Let S be a graded ring, let I be a graded ideal in S and let I, = I N S
for all k > 0. Then S/1 is naturally a graded ring whose homogeneous component of
degree k is isomorphic to S/ I.

Proof: The map
S= @:iosk —> @;u;o(sk/lk)
(.o Skyee)b— (..,sgmod I, ...)

is surjective with kernel I = @2, Ix and defines an isomorphism of graded rings. The
details are left for the exercises.

Symmetric Algebras

The first application of Proposition 33 is in the construction of a commutative quotient
ring of 7 (M) through which R-module homomorphisms from M to any commutative
R-algebra must factor. This gives an “abelianized” version of Theorem 31. The con-
struction is analogous to forming the commutator quotient G/ G’ of a group (cf. Section
5.4).

Definition. The symmetric algebra of an R-module M is the R-algebra obtained by
taking the quotient of the tensor algebra 7 (M) by the ideal C(M) generated by all
elements of the form m; ® m, — my ® my, forall m;, m, € M. The symmetric algebra
T(M)/C(M) is denoted by S(M).

The tensor algebra 7 (M) is generated as aring by R = 7°(M) and M = T (M),
and these elements commute in the quotient ring S(M) by definition. It follows that
the symmetric algebra S(M) is a commutative ring. The ideal C(M) is generated by
homogeneous tensors of degree 2 and it follows easily that C(M) is a graded ideal.
Then by Proposition 33 the symmetric algebra is a graded ring whose homogeneous
component of degree k is SK(M) = T*(M)/C*(M). Since C(M) consists of k-tensors
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with k > 2, we have C(M) N M = 0 and so the image of M = T!(M) in S(M)
is isomorphic to M. Identifying M with its image we see that S!(M) = M and the
symmetric algebra contains M. In a similar way S°(M) = R, so the symmetric algebra
is also an R-algebra. The R-module S¥(M) is called the k™ symmetric power of M.
The first part of the next theorem shows that the elements of the k™ symmetric
power of M can be considered as finite sums of simple tensors m; ® - - - ® m,; where
tensors with the order of the factors permuted are identified. Recall also from Sec-
tion 4 that a k-multilinear map ¢ : M x - - - x M — N is said to be symmetric
if p(my,...,m) = @(@mgsqy, ..., Moy) for all permutations o of 1,2, ...,k (The
definition is the same for modules over any commutative ring R as for vector spaces.)

Theorem 34. Let M be an R-module over the commutative ring R and let S(M) be its
symmetric algebra.
(1) The k® symmetric power, S¥(M), of M is equal to M ® - - - ® M (k factors)
modulo the submodule generated by all elements of the form

Mm@ma®---@my) — (Mo @Mo2) ® - - @ Moiy)

for all m; € M and all permutations o in the symmetric group S;.

(2) (Universal Property for Symmetric Multilinear Maps) If ¢ : M x---x M — N
is a symmetric k-multilinear map over R then there is a unique R-module
homomorphism @ : S¥(M) — N suchthat ¢ = @ o, where

(:Mx--x M—> S5M)
is the map defined by
tmy,....m)=m Q- --®m, mod C(M).

(3) (Universal Property for maps to commutative R-algebras) If A is any commu-
tative R-algebra and ¢ : M — A is an R-module homomorphism, then there
is a unique R-algebra homomorphism @ : S(M) — A such that @ |y = ¢.

Proof: The k-tensors C¥(M) in the ideal C(M) are finite sums of elements of the
form

me...Om_ ,@mi@miy —miyn@m)Omi®...Q0 my

with m),...,m, € M (where k > 2 and | <i < k). This product gives a difference
of two k-tensors which are equal except that two entries (in positions i and i 4+ 1) have
been transposed, i.e., gives the element in (1) of the theorem corresponding to the trans-
position (i i+1) in the symmetric group S;. Conversely, since any permutation o in Sy
can be written as a product of such transpositions it is easy to see that every element in
(1) can be written as a sum of elements of the form above. This gives (1).

The proofs of (2) and (3) are very similar to the proof's of the corresponding “asym-
metric” results (Corollary 16 of Section 10.4 and Theorem 31) noting that C¥(M) is
contained in the kernel of any symmetric map from 7%(M) to N by part (1).
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Corollary 35. Let V be an n-dimensional vector space over the field F. Then S(V) is
isomorphic as a graded F-algebra to the ring of polynomials in » variables over F (i.e.,
the isomorphism is also a vector space isomorphism from S*(V') onto the space of all

homogeneous polynomials of degree k). In particular, dim r(S¥(V)) = (k:f;l

Proof: Let B = {vy, ..., v,} be a basis of V. By Proposition 32 there is a bijection
between a basis of 7%(V') and the set B* of ordered k-tuples of elements from B. Define
two k-tuples in B¥ to be equivalent if there is some permutation of the entries of one
that gives the other — this is easily seen to be an equivalence relation on B*. Let S(1%)
denote the corresponding set of equivalence classes. Any symmetric k-multilinear
function from V* to a vector space over F will be constant on all of the basis tensors
whose corresponding k-tuples lie in the same equivalence class; conversely, any function
from S(B*) can be uniquely extended to a symmetric k-multilinear function on V*. It
follows that the vector space over F with basis S(BX) satisfies the universal property
of S¥(V) in Theorem 34(2), hence is isomorphic to S*(V). Each equivalence class has
a unique representative of the form (v{', v37, ..., v%"), where v} denotes the sequence
i, Ui, . - - , U; takena times, each a; > 0, and a; +-- - +a, = k. Thus there is a bijection
between the basis S¥ (1) and the set x;" - - - x of monic monomials of degree k in the
polynomial ring F[xy, ..., x,]. This bijection extends to an isomorphism of graded
F-algebras, proving the first part of the corollary. The computation of the dimension
of S¥(V) (i.e., the number of monic monomials of degree k) is left as an exercise.

Exterior Algebras

Recall from Section 4 that a multilinearmap ¢ : M x---x M — N is called alternating
if o(mq, ..., m) = 0 whenever m; = m; 1 forsome i. (The definition is the same for
any R-module as for vector spaces.) We saw that the determinant map was alternating,
and was uniquely determined by some additional constraints. We can apply Proposition
33 to construct an algebra through which alternating multilinear maps must factor in a
manner similar to the construction of the symmetric algebra (through which symmetric
multilinear maps factor).

Definition. The exterior algebra of an R-module M is the R-algebra obtained by
taking the quotient of the tensor algebra 7 (M) by the ideal .A(M) generated by all
elements of the form m ® m, for m € M. The exterior algebra 7(M)/ A(M) is denoted
by /\ (M) and the image of m; @m, ®---@my in A\ (M) is denoted by my Ama A--- Amy.

As with the symmetric algebra, the ideal .A(M) is generated by homogeneous
elements hence is a graded ideal. By Proposition 33 the exterior algebra is graded, with

k™ homogeneous component /\k (M) = T*(M)/A*(M). We can againidentify R with
/\O(M ) and M with /\' (M) and so consider M as an R-submodule of the R-algebra
/A\(M). The R-module /\k (M) is called the k™ exterior power of M.

The multiplication

(mlA---Am,-)A(m’l/\‘--/\m})zml/\---/\mi/\m’l/\---/\m}
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in the exterior algebra is called the wedge (or exterior) product. By definition of the
quotient, this multiplication is alternating in the sense that the product m1 A - - - A my
is0in A(M) if m; = m;y, forany 1 <i < k. Then

O=@m+mYA@m+m)
=mAm+mAm)+ @@ Am)+ @' Am’)
=@mAm)+ @ Am)

shows that the multiplication is also anticommutative on simple tensors:
mAam =—m' Am forallm,m’ € M.
This anticommutativity does not extend to arbitrary products, however, i.e., we need

not have ab = —ba for all a, b € /\ (M) (cf. Exercise 4).

Theorem 36. Let M be an R-module over the commutative ring R and let /A (M) be
its exterior algebra.
(1) The k™ exterior power, /\k(M ), of Misequalto M ® - - - @ M (k factors)
modulo the submodule generated by all elements of the form

m @m;®---®@my; wherem; =m; forsomei # j.
In particular,
miAmyA---Amp =0 if m; =m; forsomei # j.

(2) (Universal Property for Alternating Multilinear Maps)If ¢ : M x---xM — N
is an alternating k-multilinear map then there is a unique R-module homomor-

phism @ : A\*(M) — N such that ¢ = @ o (, where
t:Mx---xM—»/\k(M)
is the map defined by

t(ml,...,mk)=m1/\---/\mk.

Remark: The exterior algebra also satisfies a universal property similar to (3) of The-
orem 34, namely with respect to R-module homomorphisms from M to R-algebras A
satisfying a®> = Oforall a € A (cf. Exercise 6).

Proof: The k-tensors A*(M) in the ideal A(M) are finite sums of elements of the
form
meo®..0m_1QmAmM)@mi 12 Q... dmy

withmy, ..., my,m € M (wherek > 2 and 1 < i < k), which s a k-tensor with two
equal entries (in positions i and i + 1), so is of the form in (1). For the reverse inclusion,
note that since

m’®m=—m®m'+[(m+m’)®(m+m')—m®m—m'®m’]
= —m ® m’ mod A(M),
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interchanging any two consecutive entries and multiplying by —1 in a simple k-tensor
gives an equivalent tensor modulo .A* (M) . Using such a sequence of interchanges and
sign changes we can arrange for the equal entries m; and m; of a simple tensor as in (1)
to be adjacent, which gives an element of A (M). It follows that the generators in (1)
are contained in .A¥(M), which proves the first part of the theorem.

As in Theorem 34, the proof of (2) follows easily from the corresponding result
for the tensor algebra in Theorem 31 since A¥(M) is contained in the kernel of any
alternating map from 7*(M) to N.

Examples

@

@

Suppose V is a one-dimensional vector space over F with basis element v. Then
/\"'(V) consists of finite sums of elements of the form ajv A agv A --- A v, i€,
alaz - - ar(VAUVA---AD) forql,...,ak € F. Since v A v = 0, it follows that
/\O(V) = F, /\I(V) = V,and \'(V) =0fori > 2, so as a graded F-algebra we
have

AV=FaVaiale....

Suppose now that V is a two-dimensional vector space over F with basis v, v’. Here
/\" (V) consists of finite sums of elements of the form (o v+ V') A- - - A(ax v+ 0).
Such an element is a sum of elements that are simple wedge products involving only
v and v'. For example, an element in /\2(V) is a sum of elements of the form

@+ b)Y A(cv+dv)=acw Av) +adw AV + be( Av)
+bd(V AYV)
= (ad — bc)v AV

It follows that /\i(V) = 0 for i > 3 since then at least one of v, v’ appears twice in
such simple products.

We can see directly from /\2(V) = 7'2(V)/.A2(V) that v A V' # 0, as follows.
The vector space 7 2(V) is 4-dimensional with v ® v, v ® v/, v ® v, v/ ® v/ as basis
(Proposition 16). Theelements v ® v, v® v + v/ ® v, v/ ® v" and v ® v’ are therefore
also a basis for 72(V). The subspace A2(V) consists of all the 2-tensors in the ideal
generated by the tensors

(av+bV) ® (av+bv') = A2 (v @ v) + ab(v ® V' + V' ® v) + b*(V' @ V),

from which it is clear that A%(V) is contained in the 3-dimensional subspace having
v®v,v®v + v ®v,and v’ ® v’ as basis. In particular, the basis element v ® v’ of

T2(V) is not contained in A%(V), i.e., v AV #0in /\Z(V). .
It follows that /\O(V) =F, /\l(V) =V, /\Z(V) =F@Av),and \'(V) =0
fori > 3, so as a graded F-algebra we have

NV)=FOVOFwAV)D0D....

As the previous examples illustrate, unlike the tensor and symmetric algebras, for
finite dimensional vector spaces the exterior algebra is finite dimensional:

448

Chap. 11 Vector Spaces



Corollary 37. Let V be a finite dimensional vector space over the field F with basis
B = {v, ..., v,}. Then the vectors

Vi, ANVj, A=AV, forl <ij<ipa<---<ixy<n

are a basis of /\k( V), and /\k(V) = 0 when k > n (when k = O the basis vector is the
element 1 € F). In particular, dim F(/\k(V)) = (Z)

Proof: As the proof of Theorem 36 shows, modulo A% (M), the order of the terms
in any simple k-tensor can be rearranged up to introducing a sign change. It follows
thatthe k-tensors in the corollary (whichhave been arranged with increasing subscripts
on the v; and with no repeated entries) are generators for /\k(V). To show these vec-
tors are linearly independent it suffices to exhibit an alternating k-multilinear function
from V* to F which is 1 on a given v;, A v;, A - -+ A v; and zero on all other gen-
erators. Such a function f is defined on the basis of 7%(V) in Proposition 32 by
f(vj, ®vj, ®---®vj,) = €(0) if o is the unique permutation of (jy, j2. ..., jx) into
(i1, 12, ...,1x), and f is zero on every basis tensor whose k-tuple of indices cannot be
permuted to (iy, is, . . ., ix) (Where €(0) is the sign of o). Note that f is zero on any
basis tensor with repeated entries. The value € (o) ensures that when f is extended to
all elements of 7%(V) it gives an alternating map, i.e., f factors through .A4*(V). Hence
f is the desired function. The computation of the dimension of /\k(V) (i.e., of the
number of increasing sequences of k-tuples of indices) is left to the exercises.

The results in Corollary 37 are true for any free R-module of rank n. In particular
if M = R" with R-module basis m,, ..., m, then

N'(M)=R(@my A--- Amy)
is afree (rank 1) R-module with generator m; A - -+ A m, and
/\n+l(M) — /\n+2(M) —...=0.

Example
Let R be the polynomial ring Z[x, y] in the variables x and y. If M = R, then /\2 M)=0
so, forexample, there are no nontrivial alternating bilinear maps on R x R by the universal
property of /\2(R) with respect to such maps (Theorem 36).
Suppose now that M = I is the ideal (x, y) generatedby x and yin R. ThenI A\ I # 0.
Perhaps the easiest way to see this is to construct a nontrivial alternating bilinear map on
I x I. The map

¢(ax + by, cx + dy) = (ad — bc) mod (x, y)
is a well defined alternating R-bilinear map from I x I to Z = R/I (cf. Exercise 7). Since
¢(x,y) = 1,itfollowsthatx Ay € /\2 (I is nonzero. Unlike the situation of free modules

asin the examples following Theorem 36 (where arguments involving bases could be used),
in this case it is not at all a trivial matter to give a direct verification that x A y # 0 in

ND).
Remark: The ideal I is an example of a rank 1 (but not free) R-module (the rank of a

module over an integral domain is defined in Section 12.1), and this example shows that
the results of Corollary 37 are not true in general if the R-module is not free over R.
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Homomorphisms of Tensor Algebras

If ¢ : M — N is any R-module homomorphism, then there is an induced map on the
k™ tensor power:

THE) :m @®ma® - - @my —> @(m1) ® 9(m2) ® - - - ® (my).

It follows directly that this map sends generators of each of the homogeneous compo-
nents of the ideals C(M) and A(M) to themselves. Thus ¢ induces R-module homo-
morphisms on the quotients:

Sk@) : SK(M) — SK(V)  and  Afe) : Ay — ARV).

Moreover, each of these three maps is a ring homomorphism (hence they are graded
R-algebra homomorphisms).

Of particular interest is the case when M = V is an n-dimensional vector space
over the field F and ¢ : V — V is an endomorphism. In this case by Corollary 37,
/\" (¢) maps the 1-dimensional space /\"(V) toitself. Let vy, ..., v, be a basis of V,
so that v A - - - A v, is a basis of /\"(V). Then

/\"(¢)(v1 AN AY) =) A---Ap(uy) = D(@uviA---Av,

for some scalar D(¢) € F.

For any n x n matrix A over F we can define the associated endomorphism ¢
(with respect to the given basis vy, ..., v,), which gives a map D : M, x,(F) —»> F
where D(A) = D(¢). Itis easy to check that this map D satisfies the three axioms
for a determinant function in Section 4. Then the uniqueness statement of Theorem 24
gives:

Proposition 38. If ¢ is an endomorphism on a n-dimensional vector space V, then
A" (@)(w) = det(p)w forall w € A" (V).

Note that Proposition 38 characterizes the determinant of the endomorphism ¢ as
a certain naturally induced linear map on /\" (V). The fact that the determinant arises
naturally when considering alternating multilinear maps also explains the source of the
map ¢ in the example above.

As with the tensor product, the maps S*(¢) and /\k (¢) induced from an injective
map from M to N need not remain injective (so /\2 (M) need not be a submodule of
/\2(N ) when M is a submodule of N, for example).

Example

The inclusion ¢ : I — R of the ideal (x, y) into the ring R = Z[x, y], both considered as
R-modules, induces a map

N2@) : N2 > N2(R).
Since /\2(R) =0and /\2 (I) # 0, the map cannot be injective.
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One can show that if M is an R-module direct summand of N, then 7 (M) (respec-
tively, S(M) and /\ (M)) is an R-subalgebra of 7 (N) (respectively, S(N) and A (N))
(cf. the exercises). When R = F is a field then every subspace M of N is a direct
summand of N and so the corresponding algebra for M is a subalgebra of the algebra
for N.

Symmetric and Alternating Tensors

The symmetric and exterior algebras can in some instances also be defined in terms
of symmetric and alternating tensors (defined below), which identify these algebras as
subalgebras of the tensor algebra rather than as quotient algebras.

Forany R-module M there is a natural left group action of the symmetric group Sy
on M X M x ---x M (k factors) given by permuting the factors:

o(my,my,...,mg) = Mg-1(1y, Mg-102)5 + -+, Mg-1(k)) foreach o € S,

(the reason for o~! is to make this a left group action, cf. Exercise 8 of Section 5.1).
This map is clearly R-multilinear, so there is a well defined R-linear left group action
of S; on 7*(M) which is defined on simple tensors by

oM OMma®@---Q@mE) =My 11) @Mg-12) @ - - - @ M1y foreacho € $;.

Definition.
(1) Anelement z € T*(M) is called a symmetric k-tensor if oz = z for all o in the
symmetric group Sk.
(2) Anelement z € 7*(M) is called an alternating k-tensor if 0z = €(c)z for all
o in the symmetric group S, where €(0) is the sign, 1, of the permutation .

It is immediate from the definition that the collection of symmetric (respectively,
alternating) k-tensors is an R-submodule of the module of all k-tensors.

Example

The elements m ® m and m; ® my + my ® m are symmetric 2-tensors. The element
m) ® my — my ® m is an alternating 2-tensor.

It is also clear from the definition that both C¥ (M) and .A* (M) are stable under the
action of Sg, hence there is an induced action on the quotients S*(M) and /\k (M).

Proposition 39. Let o be an element in the symmetric group S; and let (o) be the
sign of the permutation o. Then

(1) forevery w € S¥(M) we have cw = w, and

(2) forevery w € N\*(M) we have ow = €(o)w.

Proof: The first statement is immediate from (1) in Theorem 34. We showed in the
course of the proof of Theorem 36 that

MIA---AM AMig g N---AMp=—M N\ ANMigg Am; N\--- ANMy,
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which shows that the formula in (2) is valid on simple products for the transposition
o = (ii+1). Since these transpositions generate S and € is a group homomorphism
it follows that (2) is valid for any o € S; on simple products w. Since both sides are

R-linear in w), it follows that (2) holds for all w € /\k(M ).

By Proposition 39, the symmetric group S; acts trivially on both the submodule
of symmetric k-tensors and the quotient module S*(M), the k™ symmetric power of
M. Similarly, S; acts the same way on the submodule of alternating k-tensors as on
/\k (M), the k™ exterior power of M. We now show that when k! is a unit in R that
these respective submodules and quotient modules are isomorphic (where k! is the sum
of the 1 of R with itself k! times).

For any k-tensor z € T*(M) define

Sym(z) = Z oz
gESK
Alt(z) = ) €(0) oz
gESK

For any k-tensor z, the k-tensor Sym(z) is symmetric and the k-tensor Alz(z) is alter-
nating. For example, for any T € S

T Alt(2) = Z e(c) 1oz

g ESk

= Z e(z7 o’y o'z (letting 0’ = t0)
g’ €Sy

=e(r™) ) €0') o'z = e(r)Al1(2).

ag’eSy

The tensor Sym(z) is sometimes called the symmetrization of z and Alt(z) the skew-
symmetrization of z.

If z is already a symmetric (respectively, alternating) tensor then Sym(z) (respec-
tively, Alt(z)) is just k!z. It follows that Sym (respectively, Alt) is an R-module
endomorphism of 7*(M) whose image lies in the submodule of symmetric (respec-
tively, alternating) tensors. In general these maps are not surjective, but if k! is a unit
in R then

1
ES ym(z) = z forany symmetric tensor z, and

1
FAlt(z) =z for any alternating tensor z

so that in this case the maps (1/k!)Sym and (1/k!)Alt give surjective R-module ho-
momorphisms from 7%(M) to the submodule of symmetric (respectively, alternating)
tensors.
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Proposition 40. Suppose k! is a unit in the ring R and M is an R-module. Then
(1) The map (1/k!)Sym induces an R-module isomorphism between the k'™ sym-
metric power of M and the R-submodule of symmetric k-tensors:

1
i Sym : SkM) = {symmetric k-tensors}.

(2) The map (1/k!')Alt induces an R-module isomorphism between the k'™ exterior
power of M and the R-submodule of altermating k-tensors:

1
l—(—'Alt : /\"(M) = {alternating k-tensors}.

Proof: We have seen that the respective maps are surjective R-homomorphisms
from 7 (M) so to prove the proposition it suffices to check that their kernels are C¥ (M)
and A¥ (M), respectively. We show the first and leave the second to the exercises. It is
clear that Sym is 0 on any difference of two k-tensors which differ only in the order of
their factors, so C¥(M) is contained in the kernel of (1/k!)Sym by (1) of Theorem 34.
For the reverse inclusion, observe that

1 1
z— HSym(z) = Z(z —02)
OES;
for any k-tensor z. If z is in the kernel of Sym then the left hand side of this equality
is just z; and since z — 0z € C*(M) for every o € S (again by (1) of Theorem 34), it

follows that z € C¥(M), completing the proof.

The maps (1/k!)Sym and (1/k!)Alt are projections (cf. Exercise 11 in Section 2)
onto the submodules of symmetric and antisymmetric tensors, respectively. Equiva-
lently, if k! is a unit in R, we have R-module direct sums

T*(M) = ker(r) @ image(r)

for = (1/k!)Sym or m = (1/k!)Alt. In the former case the kernel consists of C¥ (M)
and the image is the collection of symmetric tensors (in which case C* (M) is said to
form an R-module complement to the symmetric tensors). In the latter case the kernel
is AX(M) and the image consists of the alternating tensors.

The R-linear left group action of S; on 7%(M) makes 7% (M) into a module over
the group ring RS (analogous to the formation of F[x]-modules described in Section
10.1). Interms of this module structure these projections give R Si-submodule comple-
ments to the RS;-submodules C¥(M) and .A*(M). The “averaging” technique used to
construct these maps can be used to prove a very general result (Maschke’s Theorem in
Section 18.1) related to actions of finite groups on vector spaces (which is the subject
of the “representation theory” of finite groups in Part VI).

If k! is not invertible in R then in general we do not have such Sy-invariant direct
sum decompositions so it is not in general possible to identify, for example, the k'™
exterior power of M with the alternating k-tensors of M.

Note also that when k! is invertible it is possible to define the k'™ exterior powerof M
as the collection of alternating k-tensors (this equivalent approach is sometimes found
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in the literature when the theory is developed over fields such as R and C). In this case
the multiplication of two alternating tensors z and w is defined by first taking the product
zw = z @ w in 7 (M) and then projecting the resulting tensor into the submodule of
alternating tensors. Note that the simple product of two alternating tensors need not be
alternating (for example, the square of an alternating tensor is a symmetric tensor).

Example
Let V be a vector space over a field F in which k! # 0. There are many vector space
complements to A*(V) in T*(V) (just extend a basis for the subspace A*(V) to a basis
for T*(V), for example). These complements depend on choices of bases for T5W)
and so are indistinguishable from each other from vector space considerations alone. The
additional structure on 7% (V) given by the action of Sy singles out a unique complement
to A*(V), namely the subspace of alternating tensors in Proposition 40.

Suppose that k! # 0 in F for all k > 2 (ie., the field F has “characteristic 0,”
cf. Exercise 26 in Section 7.3), for example, F = Q. Then the full exterior algebra
A(V) = S0 /\k(V) can be identified with the collection of tensors whose homogeneous
components are alternating (with respect to the appropriate symmetric groups Sg).

Multiplication in A\ (V) in terms of alternating tensors is rather cumbersome, however.
For example let v1, v2, v3 be distinct basis vectors in V. The product of the two alternating
tensors z = v; and w = vy ® v3 — v3 ® v2 is obtained by first computing

IQW=11Q0OV3— v QU3 RV
in the full tensor algebra. This 3-tensor is not alternating — for example,
A2)z@uW)=12Q U U3 — 13OV QU2 # —ZQw

andalso (123)(z®@w) = B3 ®v1 ®vz — 12 ® V1 ®v3 # z® w. The multiplication requires
that we project this tensor into the subspace of alternating tensors. This projection is given
by (1/3")Alt(z ® w) and an easy computation shows that

1 1
6Alt(z®w):§[v1®v2®v3+v2®v3®v1+v3®v1®v2
- U-—1RY V-3 W],

so the right hand side is the product of z and w in terms of alternating tensors. The same
product in terms of the quotient algebra /\ (V) is simply

v1 A 2u2 Av3) =2v1 Ava Avs.

EXERCISES

In these exercises R is a commutative ring with 1 and M is an R-module; F is a field and V is
a finite dimensional vector space over F.

1. Prove that if M is a cyclic R-module then 7 (M) = S(M), i.e., the tensor algebra 7 (M)
is commutative.

2. Fill in the details for the proof of Proposition 33 that S/I = GB°° oSk/Ix. [Show first that
Si1j C Iiy;. Use this to show that the multiplication (S; /I; )(SJ/I ) € S,+J/I,+J is well
defined, and then check the ring axioms and verify the statements made in the proof of
Proposition 33.]
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10.

11.

12.

13.

14.

Sec.

. Show that the image of the map Sym: for the Z-module Z consists of the 2-tensors a(1 ® 1)

where a isan even integer. Conclude in particular that the symmetric tensor 1®1inZ®z Z
is not contained in the image of the map Sym.

. Provethat m Any Anpg A--- Any = (—l)k(nl Ang A --- Ang A m). In particular,

xANYAZ)=@Az)Axforallx,y,z € M.

. Prove that if M is a free R-module of rank n then A\’ (M) is a free R-module of rank %)

fori=0,1,2,....

. If A is any R-algebra in whicha? = Oforalla € Aand ¢ : M — A is an R-module

homomorphism, prove there is a unique R-algebra homomorphism @ : A(M) — A such
that @ |y = ¢.

. Let R=Z[x,yland I = (x, y).

(a) Prove thatif ax + by = a’x + b’y in Rthena’ = a + yf and b’ = b — xf for some
polynomial f(x, y) € R.

(b) Provethat the map ¢(ax+by, cx+dy) = ad —bcmod (x, y) in the example following
Corollary 37 is a well defined alternating R-bilinear map from I x I to Z = R/I.

. Let R be an integral domain and let F be its field of fractions.

(a) Considering F as an R-module, prove that /\2 F=0.

(b) Let I be any R-submodule of F (for example, any ideal in R). Prove that /\i ITisa
torsion R-module for i > 2 (i.e., for every x € /\i I there is some nonzero r € R
with rx = 0).

(¢) Give an example of an integral domain R and an R-module 7 in F with /\i I # 0 for
every i > 0 (cf. the example following Corollary 37).

. Let R = Z[G] be the groupring of the group G = {1, o} of order2. Let M = Ze| +Ze; be

a free Z-module of rank 2 with basis e; and e;. Define o(e;) = €1 +2e2 and o (e2) = —es.

Prove that this makes M into an R-module and that the R-module /\2 M is a group of

order 2 with e; A e as generator.

Prove that z — (1/k") Alt(z) = (1/kY) Zoesk (z — €(0)oz) for any k-tensor z and use this

to prove that the kernel of the R-module homomorphism (1/k!)Alt in Proposition 40 is

Ak (M).

Prove that the image of Alt; is the unique largest subspace of 7%(V) on which each

permutation o in the symmetric group S acts as multiplication by the scalar €(c).

(a) Prove that if f(x, y) is an alternating bilinear map on V (i.e., f(x,x) = 0 for all
x € V)then f(x,y) = —f(y,x) forallx,y € V.

(b) Suppose that —1 # 1in F. Prove that f(x, y) is an alternating bilinear map on V
(i, f(x,x)=0forall x € V)ifand onlyif f(x,y) = —f(y,x) forallx, y e V.

(c) Suppose that —1 = 1in F. Prove that every alternating bilinear form f(x, y) on V is
symmetric (i.e., f(x, y) = f(y, x) forall x, y € V). Prove that there is a symmetric
bilinear map on V that is not alternating. [One approach: show that C2(V) C A%(V)
and C%(V) #* A%2(v) by counting dimensions. Alternatively, construct an explicit
symmetric map that is not alternating.]

Let F be any field in which —1 # 1 and let V be a vector space over F. Prove that

VR V=8W)e /\Z(V) i.e., that every 2-tensor may be written uniquely as a sum of

a symmetric and an alternating tensor.

Prove that if M is an R-module direct factor of the R-module N then 7 (M) (respectively,

S (M) and A\(M)) is an R-subalgebra of 7 (V) (respectively, S(N) and /\(N)).
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CHAPTER 12

Modules over
Principal Ideal Domains

The main purpose of this chapter is to prove a structure theorem for finitely generated
modules over particularly nice rings, namely Principal Ideal Domains. This theorem is
an example of the ideal structure of the ring (which is particularly simple for P.I.D.s)
being reflected in the structure of its modules. If we apply this result in the case where
the PL.D. is the ring of integers Z then we obtain a proof of the Fundamental Theorem
of Finitely Generated Abelian Groups (which we examined in Chapter S without proof).
If instead we apply this structure theorem in the case where the P.I.D. is the ring F[x]
of polynomials in x with coefficients in a field F we shall obtain the basic results on
the so-called rational and Jordan canonical forms for a matrix. Before proceeding to
the proof we briefly discuss these two important applications.

Wehave already discussed in Chapter S the result that any finitely generated abelian
group is isomorphic to the direct sum of cyclic abelian groups, either Z or Z/nZ for
some positive integer n # 0. Recall also that an abelian group is the same thing as
a Z-module. Since the ideals of Z are precisely the trivial ideal (0) and the principal
ideals (n) = nZ generated by positive integers n, we see that the Fundamental Theorem
of Finitely Generated Abelian Groups in the language of modules says that any finitely
generated Z-module is the direct sum of modules of the form Z/I where I is an ideal
of Z (these are the cyclic Z-modules), together with a uniqueness statement when the
direct sum is written in a particular form. Note the correspondence between the ideal
structure of Z and the structure of its (finitely generated) modules, the finitely generated
abelian groups.

The Fundamental Theorem of Finitely Generated Modules over a P.I.D. states that
the same result holds when the Principal Ideal Domain Z is replaced by any P.I.D. In
particular, we have seen in Chapter 10 that a module over the ring F[x] of polynomials
in x with coefficients in the field F is the same thing as a vector space V together
with a fixed linear transformation T of V (where the element x acts on V by the linear
transformation 7). The Fundamental Theorem in this case will say that such a vector
space is the direct sum of modules of the form F[x]/I where I is an ideal of F[x],
hence is either the trivial ideal (0) ora principal ideal ( f (x)) generated by some nonzero
polynomial f(x) (these are the cyclic F[x]-modules), again with a uniqueness statement
when the direct sum is written in a particular form. If this is translated back into the
language of vector spaces and linear transformations we can obtain information on the
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linear transformation 7.

For example, suppose V is a vector space of dimension n over F and we choose
a basis for V. Then giving a linear transformation 7 of V to itself is the same thing
as giving an n x n matrix A with coefficients in F (and choosing a different basis for
V gives a different matrix B for T which is similar to A i.e., is of the form P~1AP
for some invertible matrix P which defines the change of basis). We shall see that
the Fundamental Theorem in this situation implies (under the assumption that the field
F contains all the “eigenvalues” for the given linear transformation 7') that there is a
basis for V so that the associated matrix for T is as close to being a diagonal matrix
as possible and so has a particularly simple form. This is the Jordan canonical form.
The rational canonical form is another simple form for the matrix for 7 (that does not
require the eigenvalues for T to be elements of F). In this way we shall be able to give
canonical forms for arbitrary n x n matrices over fields F, that is, find matrices which
are similar to a given n x n matrix and which are particularly simple (almost diagonal,
for example).

Example

LetV =Q° = {(x,y,2) | x, y, z € Q} be the usual 3-dimensional vector space of ordered
3-tuples with entries from the field F = Q of rational numbers and suppose T is the linear
transformation

T(x,y,2) = 9x +4y +5z,—4x — 3z, —6x — 4y — 27), x,y,2€Q.

If we take the standard basis e; = (1,0, 0), e = (0, 1, 0), e3 = (0,0, 1) for V then the
matrix A representing this linear transformation is

9 4 5
A=|-4 0 -3}.
-6 —4 —2

We shall see that the Jordan canonical form for this matrix A is the much simpler matrix

210
B=|0 2 O
0 0 3

obtained by taking instead the basis 1 = (2, -1, —2), f = (1,0, -1), f3 = (3, -2, —2)
for V, since in this case

T(1)=TQ2,-1,-2)=@4,-2,-4)=2-fi+0-»+0-f3
T(R)=T7T1,0,-1)=4,-1,-4)=1-i+2-£2+0-f3
T(f3)=T3,-2,-2)=9,-6,—6)=0-f1+0- f2+3- f3,
so the columns of the matrix representing 7 with respect to this basis are (2, 0, 0), (1, 2, 0)
and (0, 0, 3), i.e., T has matrix B with respect to this basis. In particular A is similar to the
simpler matrix B.
In fact this linear transformation 7' cannot be diagonalized (i.e., there is no choice of

basis for V for which the corresponding matrix is a diagonal matrix) so that the matrix B
is as close to a diagonal matrix for T as is possible.
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The first section below gives some general definitions and states and proves the
Fundamental Theorem over an arbitrary P1.D., after which we return to the application
to canonical forms (the application to abelian groups appears in Chapter 5). These
applications can be read independently of the general proof. An alternate and compu-
tationally useful proof valid for Euclidean Domains (so in particular for the rings Z and
F[x]) along the lines of row and column operations is outlined in the exercises.

12.1 THE BASIC THEORY

We first describe some general finiteness conditions. Let R be aring and let M be a left
R-module.

Definition.
(1) The left R-module M is said to be a Noetherian R-module or to satisfy the
ascending chain condition on submodules (or A.C.C. on submodules) if there
are no infinite increasing chains of submodules, i.e., whenever

MiCM,CM;C---

is an increasing chain of submodules of M, then there is a positive integer m
such that for all k > m, M = M,, (so the chain becomes stationary at stage m:
M, = Mm+1 =Mpi2=...).

(2) The ring R is said to be Noetherian if it is Noetherian as a left module over
itself, i.e., if there are no infinite increasing chains of left ideals in R.

One can formulate analogous notions of A.C.C. on right and on two-sided ideals in
a (possibly noncommutative) ring R. For noncommutative rings these properties need
not be related.

Theorem 1. Let R be a ring and let M be a left R-module. Then the following are
equivalent:
(1) M is a Noetherian R-module.
(2) Every nonempty set of submodules of M contains a maximal element under
inclusion.
(3) Every submodule of M is finitely generated.

Proof: [(1) implies (2)] Assume M is Noetherian and let ¥ be any nonempty
collection of submodules of M. Choose any M; € X. If M, is a maximal element of
¥, (2) holds, so assume M; is not maximal. Then there is some M, € X such that
M, C M,. If M, is maximal in X, (2) holds, so we may assume there is an M3 € X
properly containing M,. Proceeding in this way one sees that if (2) fails we can produce
by the Axiom of Choice an infinite strictly increasing chain of elements of X, contrary
to (1).

[(2) implies (3)] Assume (2) holds and let N be any submodule of M. Let X be
the collection of all finitely generated submodules of N. Since {0} € X, this collection
is nonempty. By (2) X contains a maximal element N’. If N’ # N,letx € N — N'.
Since N’ € X, the submodule N’ is finitely generated by assumption, hence also the
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submodule generated by N’ and x is finitely generated. This contradicts the maximality
of N’, so N = N’ is finitely generated.

[(3) implies (1)] Assume (3) holds and let M; € M; € Ms3... be a chain of
submodules of M. Let

and note that N is a submodule. By (3) N is finitely generated by, say, ai, a, .. ., an.
Since a; € N for all i, each g; lies in one of the submodules in the chain, say M.
Let m = max {ji, ja, - - -, jn}- Then a; € M,, for all i so the module they generate is
contained in M,,, i.e., N € M,,. This implies M,, = N = M, for all k > m, which
proves (1).

Corollary 2. If R is a P1.D. then every nonempty set of ideals of R has a maximal
element and R is a Noetherian ring.

Proof: The PL.D. R satisfies condition (3) in the theorem with M = R.

Recall that even if M itself is a finitely generated R-module, submodules of M
need not be finitely generated, so the condition that M be a Noetherian R-module is in
general stronger than the condition that M be a finitely generated R-module.

We require a result on “linear dependence” before turning to the main results of
this chapter.

Proposition 3. Let R be an integral domain and let M be a free R-module of rank
n < oo. Then any n + 1 elements of M are R-linearly dependent, i.e., for any
Y1, Y2, - - - » Yn+1 € M there are elements ry, ry, . .., r,+1 € R, not all zero, such that

riyi+nrny:+ ...+ rmeyne = 0.

Proof: The quickest way of proving this is to embed R in its quotient field F (since
R is an integral domain) and observe that since M = RG R @ - - - ® R (n times) we
obtain M C F&® F & - - - @ F. The latter is an n-dimensional vector space over F so
any n+ 1 elements of M are F-linearly dependent. By clearing the denominators of the
scalars (by multiplying through by the product of all the denominators, for example),
we obtain an R-linear dependence relation among the n + 1 elements of M.

Alternatively, let ey, . .., e, be a basis of the free R-module M andlet yy, ..., Yat1
beanyn+ 1elementsof M. For1 <i <n+1writey; = ay;¢; + aziea + ... +api€; in
terms of the basis ey, e;, . . ., e,. Let A be the (n + 1) x (n + 1) matrix whose i, j entry

isajj,1 <i <n,1 <j <n+1 and whose last row is zero, so certainly det A = 0.
Since R is an integral domain, Corollary 27 of Section 11.4 shows that the columns
of A are R-linearly dependent. Any dependence relation on the columns of A gives a
dependence relation on the y;’s, completing the proof.

If R is any integral domain and M is any R-module recall that

Tor(M) = (x € M | rx = O for some nonzero r € R}

Sec. 12.1  The Basic Theory 459



is a submodule of M (called the torsion submodule of M) and if N is any submodule of
Tor(M), N is called a torsion submodule of M (so the torsion submodule of M is the
union of all torsion submodules of M, i.e., is the maximal torsion submodule of M). If
Tor(M) = 0, the module M is said to be torsion free.

Forany submodule N of M, the annihilator of N is the ideal of R defined by

Ann(N)={re R|rn =0foralln € N}.

Note that if N is not a torsion submodule of M then Ann(N) = (0). It is easy to see
thatif N, L are submodules of M with N C L, thenAnn(L) C Ann(N). If RisaP.LD.
and N C L € M with Ann(N) = (a) and Ann(L) = (b), then a | b. In particular,
the annihilator of any element x of M divides the annihilator of M (this is implied by
Lagrange’s Theorem when R = Z).

Definition. For any integral domain R the rank of an R-module M is the maximum
number of R-linearly independent elements of M.

The preceding proposition states that for a free R-module M over anintegral domain
the rank of a submodule is bounded by the rank of M. This notion of rank agrees with
previous uses of the same term. If the ring R = F is a field, then the rank of an
R-module M is the dimension of M as a vector space over F and any maximal set
of F-linearly independent elements is a basis for M. For a general integral domain,
however, an R-module M of rank n need not have a “basis,” i.e., need not be a free
R-module even if M is torsion free, so some care is necessary with the notion of rank,
particularly with respect to the torsion elements of M. Exercises 1 to 6 and 20 give
an alternate characterization of the rank and provide some examples of (torsion free)
R-modules (of rank 1) that are not free.

The next important result shows that if N is a submodule of a free module of finite
rank over a PID. then N is again a free module of finite rank and furthermore it is
possible to choose generators for the two modules which are related in a simple way.

Theorem 4. Let R be a Principal Ideal Domain, let M be a free R-module of finite rank
n and let N be a submodule of M. Then
(1) N is free of rank m, m < n and

(2) thereexists abasis y1, y2, - .., y, of M sothata,y;, azys, .. . , Gy is abasis of
N where ay, ay, . . ., a,, are nonzero elements of R with the divisibility relations
alay| - | am.

Proof: The theoremis trivial for N = {0}, so assume N # {0}. Foreach R-module
homomorphism ¢ of M into R, the image ¢(N) of N is a submodule of R, i.e., an
ideal in R. Since R is a P1.D. this ideal must be principal, say ¢(N) = (a,), for some
a, € R. Let

¥ ={(@ay) | ¢ € Homg(M, R)}

be the collection of the principal ideals in R obtained in this way from the R-module
homomorphisms of M into R. The collection X is certainly nonempty since taking ¢
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to be the trivial homomorphism shows that (0) € £. By Corollary 2, ¥ has at least
one maximal element i.e., there is at least one homomorphism v of M to R so that the
principal ideal v(N) = (a,) is not properly contained in any other element of . Let
a; = a, for this maximal elementand let y € N be an element mapping to the generator
a; under the homomorphism v: v(y) = a;.

We now show the element q; is nonzero. Let xq, x, .. ., x, be any basis of the free
module M and let r; € Homg (M, R) be the natural projection homomorphism onto
the i coordinate with respect to this basis. Since N # {0}, there exists an i such that
7;(N) # 0, which in particular shows that ¥ contains more than just the trivial ideal
(0). Since (a;) is a maximal element of X it follows that a; # O.

We next show that this element a; divides ¢(y) for every ¢ € Homg(M, R). To
see this let d be a generator for the principal ideal generated by a; and ¢ (y). Thend is a
divisor of both g; and ¢(y) in R and d = rja; + r,¢(y) for some ry, r, € R. Consider
the homomorphism ¢ = rjv + ry¢ from M to R. Then Y(y) = (nv + re)(y) =
ria; + r¢(y) = d so that d € ¥ (N), hence also (d) € ¥(N). But d is a divisor of
a; so we also have (a;) C (d). Then (a;) € (d) € ¥ (N) and by the maximality of
(a1) we must have equality: (a;) = (d) = Y¥(N). In particular (a,) = (d) shows that
aQ | ¢(y) since d divides ¢(y).

If we apply this to the projection homomorphisms 77; we see that a; divides 7; (y)
for alli. Write 77; (y) = a;1b; forsome b; € R, 1 < i < n and define

n
n = Zbixi-
i=1

Notethata;y; = y. Sincea; = v(y) = v(a;y1) = a;v(y1) and a; is a nonzero element
of the integral domain R this shows

v(y) = 1.

We now verify that this element y; can be taken as one element in a basis for M
and that a;y; can be taken as one element in a basis for N, namely that we have
(a) M = Ry, ©kerv, and
(b) N = Ra;y; & (N Nkerv).

To see (a) let x be an arbitrary element in M and write x = v(x)y; + (x — v(x)y;).
Since

v(x —v(x)y1) = v(x) —vx)v(y)
=v(x)—vx)-1
.=0

we see that x — v(x)y; is an element in the kernel of v. This shows that x can be written
as the sum of an element in Ry; and an element in the kernel of v, so M = Ry; + ker v.
To see that the sum is direct, suppose ry; is also an element in the kernel of v. Then
0 = v(ry;) = rv(y;1) = r shows that this element is indeed O.

For (b) observe that v(x’) is divisible by a; forevery x’ € N by the definition of a;
as a generator for v(N). If we write v(x’) = ba; where b € R then the decomposition
we used in (a) above is X’ = v(x")y; + (x' — v(x')y1) = bayy; + (x’ — ba;y;) where
the second summand is in the kernel of v and is an element of N. This shows that
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N = Rayy1 + (N Nkerv). The fact that the sum in (b) is direct is a special case of the
directness of the sum in (a).

We now prove part (1) of the theorem by induction on the rank, m, of N. If m = 0,
then N is a torsion module, hence N = O since a free module is torsion free, so (1)
holds trivially. Assume then that m > 0. Since the sum in (b) above is direct we see
easily that N N ker v has rank m — 1 (cf. Exercise 3). By induction N Nkerv is then
a free R-module of rank m — 1. Again by the directness of the sum in (b) we see that
adjoining a; y1 to any basis of N Nkerv gives a basis of N, so N is also free (of rank
m), which proves (1).

Finally, we prove (2) by induction on n, the rank of M. Applying (1) to the
submodule ker v shows that this submodule is free and because the sum in (a) is direct
itisfree of rank n — 1. By the induction assumption applied to the module ker v (which
plays the role of M) and its submodule ker v N N (which plays the role of ), we see

that there is a basis y3, y3, ..., y, of kerv such thatayys, asys, . .., @y is a basis of
N Nker v for some elements az, as, ...,a, of R witha; | a3 | --- | a,. Since the
sums (a) and (b) are direct, y;, y2, ..., Y, is a basis of M and ayy1, a2ys, ..., QnYm 1S

a basis of N. To complete the induction it remains to show that a; divides a,. Define
a homomorphism ¢ from M to R by defining ¢(y1) = ¢(y2) = 1 and ¢(y;) = O, for
all i > 2, on the basis for M. Then for this homomorphism ¢ we have a; = ¢(a1y1)
soa; € ¢(N) hence also (a;) € ¢(N). By the maximality of (a;) in X it follows that
(a1) = ¢(N). Since a; = ¢(a2y2) € ¢(N) we then have a; € (a)) i.e., a; | a;. This
completes the proof of the theorem.

Recall that the left R-module C is a cyclic R-module (forany ring R, not necessarily
commutative nor with 1) if there is an element x € C such that C = Rx. We can then
define an R-module homomorphism

n:R—>C

by 7 (r) = rx, which will be surjective by the assumption C = Rx. The First Isomor-
phism Theorem gives an isomorphism of (left) R-modules

R/kern = C.

If Ris a P1.D., ker i is a principal ideal, (a), so we see that the cyclic R-modules
C are of the form R / (a) where (a) = Ann(C).

The cyclic modules are the simplest modules (since they require only one generator).
The existence portion of the Fundamental Theorem states that any finitely generated
module over a P1.D. is isomorphic to the direct sum of finitely many cyclic modules.

Theorem 5. (Fundamental Theorem, Existence: Invariant Factor Form) Let R be a
P1D. and let M be a finitely generated R-module.
(1) Then M is isomorphic to the direct sum of finitely many cyclic modules. More
precisely,
MZR ®@R[/@)®R[(a)®---®R/(an)

for some integer r > 0 and nonzero elements ay, a,, . . ., a, of R which are not
units in R and which satisfy the divisibility relations

alay|---|ay.
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(2) M is torsion free if and only if M is free.
(3) In the decomposition in (1),

Tor(M) = R/(a)) ® R /(@) ® - -- ® R/ (ap).

In particular M is a torsion module if and only if » = O and in this case the
annihilator of M is the ideal (a,,).

Proof: The module M can be generated by a finite set of elements by assumption
so let x1, x2, ..., x, be a set of generators of M of minimal cardinality. Let R" be
the free R-module of rank n with basis by, b,, ..., b, and define the homomorphism
mw : R" — M by defining 7w (b;) = x; for all i, which is automatically surjective
since xi, ..., X, generate M. By the First Isomorphism Theorem for modules we have
R" / kerm = M. Now, by Theorem 4 applied to R" and the submodule ker # we can
choose another basis y1, y2, ..., y» of R” so that a1y;, a2ys, ..., GnYm is a basis of
ker 7 for some elements aj, @, ..., a, of R withay | a; | - - - | a,,. This implies

MZ=R"[kerm = (Ry1 ® Ry:® - - - ® Ry,)/(Rary1 ® Razy, ® - - - @ RamYm).

To identify the quotient on the right hand side we use the natural surjective R-module
homomorphism

Ry ®Ry,®---® Ry, > R[(a)®R[(@)®---®R[(a,) ® R"™

that maps (@1y1, ..., ¢, Yn) to (g mod (@1), ..., a, mod (a,), Gpm+1, - .., 0n). The
kemel of this map is clearly the set of elements where g; divides o;, i = 1,2,...,m,
ie., Rajy1 ® Rayy, @ - - - ® Ra,, y, (cf. Exercise 7). Hence we obtain

MZ=R/(@)®R/(@)® - ®R/(an) ® R" ™

If a is a unit in R then R / (a) = 0, so in this direct sum we may remove any of the
initial @; which are units. This gives the decomposition in (1) (with r = n — m).
Since R / (a) is atorsion R-module for any nonzero element a of R, (1) immediately
implies M is a torsion free module if and only if M = R”, which is (2). Part (3) is
immediate from the definitions since the annihilator of R / (a) is evidently the ideal (a).

We shall shortly prove the uniqueness of the decomposition in Theorem 5, namely
that if we have

MZR ®R[/b))®R/(b) & ® R/ (bw)

for some integer ' > 0 and nonzero elements by, bs, . .., b,y of R which are not units
with
by byl | by,

thenr =+, m = m’ and (a;) = (b;) (so a; = b; up to units) for all i. Itis precisely the
divisibility condition a; | @ | - - - | a,, which gives this uniqueness.
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Definition. The integer r in Theorem S is called the free rank or the Betti number of
M and the elements ay, az, . . ., a, € R (defined up to multiplication by units in R) are
called the invariant factors of M.

Note that until we have proved that the invariant factors of M are unique we should
propetrly refer to a set of invariant factors for M (and similarly for the free rank), by
which we mean any elements giving a decomposition for M as in (1) of the theorem
above.

Using the Chinese Remainder Theorem it is possible to decompose the cyclic
modules in Theorem 5 further so that M is the direct sum of cyclic modules whose
annihilators are as simple as possible (namely (0) or generated by powers of primes in
R). This gives an alternate decomposition which we shall also see is unique and which
we now describe.

Suppose a is a nonzero element of the Principal Ideal Domain R. Then since R is
also a Unique Factorization Domain we can write

) 02

a=upy'py’...ps"

where the p; are distinct primes in R and u is a unit. This factorization is unique
up to units, so the ideals (p:-"' ), i = 1,...,s are uniquely defined. Fori # j we
have (p{") + (p;-r’ ) = R since the sum of these two ideals is generated by a greatest
common divisor, which is 1 for distinct primes p;, p;. Put another way, the ideals
( p:.”" ),i =1,...,s, are comaximal in pairs. The intersection of all these ideals is the
ideal (a) since a is the least common multiple of p{*, p5?, ..., p%. Then the Chinese
Remainder Theorem (Theorem 7.17) shows that

R/@ZR/(P)YOR/(p3)® - & R/(p%)

as rings and also as R-modules.

Applying this to the modules in Theorem 5 allows us to write each of the direct
summands R / (a;) for the invariant factor a; of M as a direct sum of cyclic modules
whose annihilators are the prime power divisors of a;. This proves:

Theorem 6. (Fundamental Theorem, Existence: Elementary Divisor Form) Let R be a
PID. and let M be a finitely generated R-module. Then M is the direct sum of a finite
number of cyclic modules whose annihilators are either (0) or generated by powers of
primesin R, i.e.,

MZROR/(PYOR/(P5)®---® R/ (p")

where r > 0 is an integer and p}’, ..., p;* are positive powers of (not necessarily
distinct) primes in R.

We proved Theorem 6 by using the prime power factors of the invariant factors for
M. In fact we shall see that the decomposition of M into a direct sum of cyclic modules
whose annihilators are (0) or prime powers as in Theorem 6 is unique, i.e., the integer
r and the ideals (p'), ..., (p;") are uniquely defined for M. These prime powers are
given a name:
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Definition. Let R be a P1.D. and let M be a finitely generated R-module as in Theo-
rem 6. The prime powers p{', ..., p;" (defined up to multiplication by units in R) are
called the elementary divisors of M.

Suppose M is a finitely generated torsion module over the Principal Ideal Domain
R. If for the distinct primes p, p2, - .., P, occurring in the decomposition in Theorem 6
we group together all the cyclic factors corresponding to the same prime p; we see in
particular that M can be written as a direct sum

M=N®N,@®---®N,

where N; consists of all the elements of M which are annihilated by some power of
the prime p;. This result holds also for modules over R which may not be finitely
generated:

Theorem 7. (The Primary Decomposition Theorem) Let R be a P.1.D. and let M be a
nonzero torsion R-module (not necessarily finitely generated) with nonzero annihilator
a. Suppose the factorization of a into distinct prime powers in R is

— o (25) ay
a=upy'py - p,

andlet N; = {x e M | pf"x =0}, 1 <i < n. Then N; is a submodule of M with
annihilator p;* and is the submodule of M of all elements annihilated by some power

of p;. We have
M=N&®&N,®---DN,.

If M is finitely generated then each N; is the direct sum of finitely many cyclic modules
whose annihilators are divisors of p}.

Proof: We have already proved these results in the case where M is finitely gener-
ated over R. In the general case it is clear that N; is a submodule of M with annihilator
dividing p;*. Since R is a PLD. the ideals (p;*) and ( p}l’ ) are comaximal for i # j, so
the direct sum decomposition of M can be proved easily by modifying the argument in
the proof of the Chinese Remainder Theorem to apply it to modules. Using this direct
sum decomposition it is easy to see that the annihilator of N; is precisely p;".

Definition. The submodule »; in the previous theorem is called the p;-primary com-
ponent of M.

Notice that with this terminology the elementary divisors of a finitely generated
module M are just the invariant factors of the primary components of Tor(M).

We now prove the uniqueness statements regarding the decompositions in the Fun-
damental Theorem.

Note that if M is any module over a commutative ring R and a is an element of R
then aM = {am | m € M} is a submodule of M. Recall also that in a Principal Ideal
Domain R the nonzero prime ideals are maximal, hence the quotient of R by a nonzero
prime ideal is a field.
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Lemma 8. Let R be a P1.D. and let p be a prime in R. Let F denote the field R / »)-
(1) Let M = R". Then M /pM = F".
2) Let M =R / (a) where a is a nonzero element of R. Then

F if p divides a in R

0 if p does not divide a in R.

3) Let M = R/(al) (7] R/(ag) b--- & R/(ak) where each q; is divisible by p.
Then M [ pM = F*.

M/ng{

Proof: (1) There is a natural map from R" to (R / (p))" defined by mapping
(a1, ...,0,) to (g mod (p), ..., a, mod (p)). This is clearly a surjective R-module
homomorphism with kernel consisting of the r-tuples all of whose coordinates are
divisible by p, i.e., pR", so R’/pR’ = (R/(p))’, which is (1).

(2) This follows from the Isomorphism Theorems: note first that p(R / (a)) is the
image of the ideal (p) in the quotient R / (a), henceis (p)+(a) / (a). Theideal (p)+(a)
is generated by a greatest common divisor of p and a, hence is (p) if p divides a and is
R = (1) otherwise. Hence pM = (p) / (a) if p divides a and is R / (a) = M otherwise.
If p divides a then M/pM = (R/(a))/((p)/(a)) = R/(p), andif p does not divide
a then M / pM = M /M = 0, which proves (2).

(3) This follows from (2) as in the proof of part (1) of Theorem 5.

Theorem 9. (Fundamental Theorem, Uniqueness) Let R be a P1.D.
(1) Two finitely generated R-modules M; and M, are isomorphic if and only if they
have the same free rank and the same list of invariant factors.
(2) Two finitely generated R-modules M; and M, are isomorphic if and only if they
have the same free rank and the same list of elementary divisors.

Proof: If M; and M, have the same free rank and list of invariant factors or the
same free rank and list of elementary divisors then they are clearly isomorphic.

Suppose that M; and M, are isomorphic. Any isomorphism between M; and M,
maps the torsion in M to the torsion in M; so we must have Tor(M;) = Tor(M;). Then
R = M, /Tor(Ml) =M, /Tor(Mz) = R™ where r; is the free rank of M; and r; is
the free rank of M,. Let p be any nonzero prime in R. Then from R = R" we obtain
RN / pR" = R / pR™. By (1) of the previous lemma, this implies F"' = F™ where F
is the field R / p R. Hence we have an isomorphism of an r;-dimensional vector space
over F with an r;-dimensional vector space over F, so that r; = r; and M; and M,
have the same free rank.

We are reduced to showing that M; and M, have the same lists of invariant factors
and elementary divisors. To do this we need only work with the isomorphic torsion
modules Tor(M;) and Tor(M;), i.e., we may as well assume that both M; and M, are
torsion R-modules.

We first show they have the same elementary divisors. It suffices to show that for
any fixed prime p the elementary divisors which are a power of p are the same for
both M; and M,. If M; = M, then the p-primary submodule of M; ( = the direct
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sum of the cyclic factors whose elementary divisors are powers of p) is isomorphic to
the p-primary submodule of M, since these are the submodules of elements which are
annihilated by some power of p. We are therefore reduced to the case of proving that
if two modules M; and M, which have annihilator a power of p are isomorphic then
they have the same elementary divisors.

We proceed by induction on the power of p in the annihilator of M; (which is the
same as the annihilator of M, since M; and M are isomorphic). If this power is O,
then both M; and M, are O and we are done. Otherwise M; (and M) have nontrivial
elementary divisors. Suppose the elementary divisors of M, are given by

elementary divisorsof My: p, p,...,p, p™, p™, ..., p*,
——
m tmes
where2 <o) < a; < --- < a, i.e., M) is the direct sum of cyclic modules with gen-

€rators Xj, X2, - - - s Xms Xm+1s - - - » Xm+s, S8y, whose annihilators are (p), (p), ..., (p),
(p*), ..., (p*), respectively. Then the submodule p M; has elementary divisors

o;—1

elementary divisors of pMy: p*~!, p271, .., p

since p M is the direct sum of the cyclic modules with generators px;, pxz, ..., pXm,
DPXm+1s - - - » PXm+s Whose annihilators are (1), (1), ..., (1), (p®~ 1), ..., (p%~1), re-
spectively. Similarly, if the elementary divisors of M, are given by
elementary divisors of My: p, p,....p, pP. p%, ..., pP,
—_——

n Wmes
where 2 < ) < B, < --- < B, then pM; has elementary divisors

elementary divisors of pM,: pf~1, pf=1 . pPTL,

Since M; = M,, also pM; = pM, and the power of p in the annihilator of pM, is
one less than the power of p in the annihilator of M;. By induction, the elementary
divisors for pM; are the same as the elementary divisors for pM,, i.e., s = t and
o—1=p—1fori=1,2,...,s hencee; = B; fori = 1, 2, ..., s. Finally, since
also M, / pMy E M, / pM,; we see from (3) of the lemma above that F™t$ = Frtt,
which shows that m + s = n + t hence m = n since we have already seen s = ¢. This
proves that the set of elementary divisors for M; is the same as the set of elementary
divisors for M,.

We now show that M| and M; must have the same invariant factors. Suppose
a | ay | --- | a, areinvariant factors for M;. We obtain a set of elementary divisors for
M, by taking the prime power factors of these elements. Note that then the divisibility
relations on the invariant factors imply that a,, is the product of the largest of the prime
powers among these elementary divisors, a,,—1 is the product of the largest prime powers
among these elementary divisors once the factors for a,, have been removed, and so
on. If by | by | --- | b, are invariant factors for M, then we similarly obtain a set of
elementary divisors for M, by taking the prime power factors of these elements. But we
showed above that the elementary divisors for M; and M, are the same, and it follows
that the same is true of the invariant factors.
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Corollary 10. Let R be a P1D. and let M be a finitely generated R-module.

(1) Theelementary divisors of M are the prime power factors of the invariant factors
of M.

(2) Thelargest invariant factor of M is the product ofthe largest of the distinct prime
powers among the elementary divisors of M, the next largest invariant factor
is the product of the largest of the distinct prime powers among the remaining
elementary divisors of M, and so on.

Proof: The procedure in (1) gives a set of elementary divisors and since the ele-
mentary divisors for M are unique by the theorem, it follows that the procedure in (1)
gives the set of elementary divisors. Similarly for (2).

Corollary 11. (The Fundamental Theorem of Finitely Generated Abelian Groups) See
Theorem 5.3 and Theorem 5.5.

Proof: Take R = Z in Theorems 5, 6 and 9 (note however that the invariant factors
are listed in reverse order in Chapter 5 for computational convenience).

The procedure for passing between elementary divisors and invariant factors in
Corollary 10 is described in some detail in Chapter 5 in the case of finitely generated
abelian groups.

Note also that if a finitely generated module M is written as a direct sum of cyclic
modules of the form R / (a) then the ideals (a) which occur are not in general unique
unless some additional conditions are imposed (such as the divisibility condition for
the invariant factors or the condition that a be the power of a prime in the case of the
elementary divisors). To decide whether two modules are isomorphic it is necessary to
first write them in such a standard (or canonical) form.

EXERCISES

1. Let M be a module over the integral domain R.

(a) Suppose x is a nonzero torsion element in M. Show that x and O are “linearly
dependent.” Conclude that the rank of Tor(}) is 0, so that in particular any torsion
R-module has rank 0.

(b) Show that the rank of M is the same as the rank of the (torsion free) quotient M /TorM.

2. Let M be a module over the integral domain R.

(a) Suppose that M has rank n and that xj, x2, ..., x,, is any maximal set of linearly
independent elements of M. Let N = R x; +... + R x,, be the submodule generated
by x1, x2. ..., x,. Prove that N is isomorphic to R” and that the quotient M/N is a
torsion R-module (equivalently, the elements xj, . . ., x,, are linearly independent and
for any y € M there is a nonzero element r € R such that ry can be written as a linear
combination rjxj + ...+ rpx, of the x;).

(b) Prove conversely that if M contains a submodule N that is free of rank n (i.e., N =
R™) such that the quotient M/N is a torsion R-module then M has rank n. [Let
¥1,¥2,---,Yn+1 be any n + 1 elements of M. Use the fact that M/N is torsion
to write r;y; as a linear combination of a basis for N for some nonzero elements
ri,..., 41 of R. Use an argument as in the proof of Proposition 3 to see that the
riyi, and hence also the y;, are linearly dependent.]
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. Let R be an integral domain and let A and B be R-modules of ranks m and n, respectively.

Prove that the rank of A @ B is m + n. [Use the previous exercise.]

. Let R be an integral domain, let M be an R-module and let N be a submodule of M.

Suppose M has rank n, N has rank r and the quotient M/N has rank s. Prove that
n=r+s. [Let x1,x2,...,xs be elements of M whose images in M/N are a maximal
set of independent elements and let x4, xs42, - - ., Xs+» be a maximal set of independent
elements in N. Prove that xj, x3, ..., xs4, are linearly independent in M and that for any
element y € M there is a nonzero element » € R such that ry is a linear combination of
these elements. Then use Exercise 2.]

. Let R = Z[x] andlet M = (2, x) be the ideal generated by 2 and x, considered as

a submodule of R. Show that {2, x} is not a basis of M. [Find a nontrivial R-linear
dependence between these two elements.] Show that the rank of M is 1 but that M is not
free of rank 1 (cf. Exercise 2).

Show that if R is an integral domain and M is any nonprincipal ideal of R then M is torsion
free of rank 1 but is not a free R-module.

. Let R be any ring, let Aj, A2, ..., A, be R-modules and let B; be a submodule of A;,

1 <i < m. Prove that

(A1 ©AD  ®Aw)[(B1®B,® - @ Bp) = (A1 /B))®(A2/B2) ®- - ® (A [ Bm).

. Let R be aPI.D, let B be a torsion R-module and let p be a prime in R. Prove that if

pb = 0 for some nonzero b € B, then Ann(B) C (p).

. Give an example of an integral domain R and a nonzero torsion R-module M such that

10.

11.

12.

13.
14.

15

Ann(M) = 0. Prove that if N is a finitely generated torsion R-module then Ann(N) # 0.

For p aprime in the PI.D. R and N an R-module prove that the p-primary component of
N is a submodule of N and prove that N is the direct sum of its p-primary components
(there need not be finitely many of them).

Let R be aP1.D,, let a be a nonzero element of R andlet M = R / (a). For any prime p
of R prove that
ifk<n

_ R/(p)
im kME[
P M/[p 0 ifk>n,

where n is the power of p dividing a in R.

Let RbeaP.LD. and let p be a prime in R.

(a) Let M beafinitely generated torsion R-module. Use the previous exercisetoprove that
p*'M [ p*M = F™ where F is the field R /(p) and ny is the number of elementary
divisors of M which are powers p® with @ > k.

(b) Suppose M) and M; are isomorphic finitely generated torsion R-modules. Use (a) to
prove that, forevery k > 0, M and M3 have the same number of elementary divisors
p* with a > k. Prove that this implies M) and M, have the same set of elementary
divisors.

If M is a finitely generated module over the PLD. R, describe the structure of M /Tor(M).
Let R be a PLD. and let M be a torsion R-module. Prove that M is irreducible (cf.
Exercises 9 to 11 of Section 10.3) if and only if M = Rm for any nonzero elementm € M

where the annihilator of m is a nonzero prime ideal (p).

Prove that if R is a Noetherianring then R" is a Noetherian R-module. [Fix a basis of R".
If M is a submodule of R" show that the collection of first coordinates of elements of M
is a submodule of R hence is finitely generated. Let m, m3, ..., m; be elements of M
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whose first coordinates generate this submodule of R. Show that any element of M can be
written as an R-linear combination of mj, ms, ..., my plus an element of M whose first
coordinate is 0. Prove that M N R"~! is a submodule of R"~! where R"~! s the set of
elements of R" with first coordinate O and then use induction on n.

The following set of exercises outlines a proof of Theorem 5 in the special case where R is
a Euclidean Domain using a matrix argument involving row and column operations. This
applies in particular to the cases R = Z and R = F[x] of interest in the applications and is
computationally useful.

Let R be a Euclidean Domain and let M be an R-module.

16. Prove that M is finitely generated if and only if there is a surjective R-homomorphism
¢ : R" — M for some integer n (this is true for any ring R).

Suppose ¢ : R" — M is a surjective R-module homomorphism. By Exercise 15, ker ¢ is
finitely generated. If xq, x2, ..., x, is a basis for R” and yy, ..., yn are generators for ker ¢
we have

Yi=anxi+aix2+---+ainxy, i=12,...,m

with coefficients g;; € R. It follows that the homomorphism ¢ (hence the module structure of
M) is determined by the choice of generators for R” and the matrix A = (a;;). Such a matrix
A will be called arelations matrix.

17. (a) Show that interchanging x; and x; in the basis for R” interchanges the i column
with the j® column in the corresponding relations matrix.

(b) Show that, for any a € R, replacing the element x; by x; — ax; in the basis for R"
gives another basis for R" and that the corresponding relations matrix for this basis
is the same as the original relations matrix except that a times the j® column has
been added to the i® column. [Note that - - - + ajx; + - - - +ajxj+---=---+(a +
agj)xi +---+aj(xj —ax;) +... .]

18. (a) Show thatinterchanging the generators y; and y; interchanges the i th row with the j
row in the relations matrix.

(b) Show that, for any a € R, replacing the element y; by y; — ay; gives another set
of generators for ker ¢ and that the corresponding relations matrix for this choice of
generators is the same as the original relations matrix except that —a times the i'® row
has been added to the j® row.

19. By the previous two exercises we may perform elementary row and column operations on
a given relations matrix by choosing different generators for R” and ker ¢. If all relation
matrices are the zero matrix then ker ¢ = 0and M = R". Otherwise let a; be the (nonzero)
g.c.d. (recall R is a Euclidean Domain) of all the entries in a fixed initial relations matrix
for M.

(a) Prove that by elementary row and column operations we may assume aj occurs in a
relations matrix of the form

a a2 ... ap

ay an ... axp

aml am2 -..- Gmnp
where a1 divides g;j,i =1,2,...,m,j=1,2,...,n.
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(b) Prove that there is a relations matrix of the form

a 0 ... O
0 apn ... ay
0 am2 ... Qmn

where a; divides all the entries.
(©) Letap be ag.c.d. of all the entries except the element a; in the relations matrix in (b).
Prove that there is a relations matrix of the form

a 0 0 ... O
0 aa O ... O
0 0 a3 ... az
0 0 au3 ... amn

where a; divides a; and a3 divides all the other entries of the matrix.

g g) where D is a diagonal

matrix with nonzero entries ay, az, . . -, ak, k < n, satisfying

(d) Prove that there is a relations matrix of the form

alaz |- | a.
Conclude that
MZ=R[/(@)®R/(@) @ - ®R/(a) ®R"*.

If n is not the minimal number of generators required for M then some of the initial
elements aj, az, . .. above will be units, so the corresponding direct summands above will be
0. If we remove these irrelevant factors we have produced the invariant factors of the module
M. Further, the image of the new generators for R" corresponding to the direct summands
above will then be a set of R-generators for the cyclic submodules of M in its invariant factor
decomposition (note that the image in M of the generators corresponding to factors with g; a
unit will be 0). The column operations performed in the relations matrix reduction correspond
to changing the basis used for R” as described in Exercise 17:

(a) Interchanging the i™ column with the j® column corresponds to interchanging the i and
j™ elements in the basis for R".

(b) Foranya € R, adding a times the j™ column to the i column corresponds to subtracting
a times the i™ basis element from the j™ basis element.

Keeping track of the column operations performed and changing the initial choice of generators
for M in the same way therefore gives a set of R-generators for the cyclic submodules of M in
its invariant factor decomposition.

This process is quite fast computationally once an initial set of generatorsfor M and initial
relations matrix are determined. The element a; is determined using the Euclidean Algorithm
asthe g.c.d. oftheelementsin the initial relations matrix. Using the row and column operations
we can obtain the appropriate linear combination of the entries to produce this g.c.d. in the
(1,1)-position of a new relations matrix. One then subtracts the appropriate multiple of the first
column and first row to obtain a matrix as in Exercise 19(b), then iterates this process. Some
examples of this procedure in a special case are given at the end of the following section.

20. Let R be an integral domain with quotient field F and let M be any R-module. Prove that
the rank of M equals the dimension of the vector space F ® g M over F.
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21. Prove that a finitely generated module over a PL.D. is projective if and only if it is free.

22. Let R be a PL.D. thatis not a field. Prove that no finitely generated R-module is injective.
[Use Exercise 4, Section 10.5 to consider torsion and free modules separately.]

12.2 THE RATIONAL CANONICAL FORM

We now apply our results on finitely generated modules in the special case where the
PLD. is the ring F[x] of polynomials in x with coefficients in a field F.

Let V be a finite dimensional vector space over F of dimension n and let T be
a fixed linear transformation of V (i.e., from V to itself). As we saw in Chapter 10
we can consider V as an F[x]-module where the element x acts on V as the linear
transformation 7 (and so any polynomial in x acts on V as the same polynomial in
T). Since V has finite dimension over F by assumption, it is by definition finitely
generated as an F-module, hence certainly finitely generated as an F[x]-module, so
the classification theorems of the preceding section apply.

Any nonzero free F[x]-module (being isomorphic to a direct sum of copies of
F[x]) is an infinite dimensional vector space over F, so if V has finite dimension over
F then it must in fact be a torsion F[x]-module (i.e., its free rank is 0). It follows from
the Fundamental Theorem that then V is isomorphic as an F[x]-module to the direct
sum of cyclic, torsion F[x]-modules. We shall see that this decomposition of V will
allow us to choose a basis for V with respect to which the matrix representation for
the linear transformation 7 is in a specific simple form. When we use the invariant
factor decomposition of V we obtain the rational canonical form for the matrix for T,
which we analyze in this section. When we use the elementary divisor decomposition
(and when F contains all the eigenvalues of T') we obtain the Jordan canonical form,
considered in the following section and mentioned earlier as the matrix representing T’
which is as close to being a diagonal matrix as possible. The uniqueness portion of the
Fundamental Theorem ensures that the rational and Jordan canonical forms are unique
(which is why they are referred to as canonical).

One important use of these canonical forms is to classify the distinct linear trans-
formations of V. In particular they allow us to determine when two matrices represent
the same linear transformation, i.e., when two given n X n matrices are similar.

Note that this will be another instance where the structure of the space being acted
upon (the invariant factor decomposition of V for example) is used to obtain significant
information on the algebraic objects (in this case the linear transformations) which
are acting. This will be considered in the case of groups acting on vector spaces in
Chapter 18 (and goes under the name of Representation Theory of Groups).

Before describing the rational canonical form in detail we first introduce some
linear algebra.

Definition.
(1) Anelement A of F is called an eigenvalue of the linear transformation T if there
is a nonzero vector v € V such that T(v) = Av. In this situation v is called an
eigenvector of T with corresponding eigenvalue A.
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(2) If Aisann xnmatrix with coefficientsin F, anelement A is called an eigenvalue
of A with corresponding eigenvector v if v is a nonzero n x 1 column vector
such that Av = Av.

(3) Ifrisaneigenvalueofthe linear transformation 7', the set {v € V | T (v) = Av}
is called the eigenspace of T corresponding to the eigenvalue A. Similarly, if A
is an eigenvalue of the n x n matrix A, the set of n x 1 matrices v with Av = Av
is called the eigenspace of A corresponding to the eigenvalue A.

Note that if we fix a basis B of V then any linear transformation T of V has an
associated n x n matrix A. Conversely, if A is any n X n matrix then the map T defined
by T(v) = Av for v € V, where the v on the right is the n x 1 vector consisting of
the coordinates of v with respect to the fixed basis B of V, is a linear transformation
of V. Then v is an eigenvector of T with corresponding eigenvalue A if and only if
the coordinate vector of v with respect to B is an eigenvector of A with eigenvalue
A. In other words, the eigenvalues for the linear transformation T are the same as the
eigenvalues for the matrix A of T with respect to any fixed basis for V.

Definition. The determinant of a linear transformation from V to V isthe determinant
of any matrix representing the linear transformation (note that this does not depend on
the choice of the basis used).

Proposition 12. The following are equivalent:
(1) Aisaneigenvalueof T
(2) Al — T is a singular linear transformation of V
) det(Al —T) =0.

Proof: Since A is an eigenvalue of T with corresponding eigenvector v if and only
if v is a nonzero vector in the kernel of AI — T, it follows that (1) and (2) are equivalent.
(2) and (3) are equivalent by our results on determinants.

Definition. Let x be an indeterminate over F. The polynomial det(xI — T) is called
the characteristic polynomial of T and will be denoted c7(x). If A is an n x n matrix
with coefficients in F, det(x] — A) is called the characteristic polynomial of A and
will be denoted c4(x).

It is easy to see by expanding the determinant that the characteristic polynomial
of either T or A is a monic polynomial of degree n = dim V. Proposition 12 says
that the set of eigenvalues of T (or A) is precisely the set of roots of the characteristic
polynomial of T (of A, respectively). In particular, T has at most n distinct eigenvalues.

We have seenthat V considered as amoduleover F[x] via the linear transformation
T is atorsion F[x]-module. Let m(x) € F[x]be the unique monic polynomial generat-
ing the annihilator of V in F[x]. Equivalently, m(x) is the unique monic polynomial of
minimal degree annihilating V (i.e., such that m(7T’) is the O linear transformation), and
if f(x) € F[x]is any polynomial annihilating V, m(x) divides f(x). Since the ring of
all n x n matrices over F is isomorphic to the collection of all linear transformations of
V to itself (an isomorphism is obtained by choosing a basis for V), it follows that for
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any n X n matrix A over F there is similarly a unique monic polynomial of minimal
degree with m(A) the zero matrix.

Definition. The unique monic polynomial which generates the ideal Ann(V) in F[x]
is called the minimal polynomial of T and will be denoted m(x). The unique monic
polynomial of smallest degree which when evaluated at the matrix A is the zero matrix
is called the minimal polynomial of A and will be denoted m4 (x).

It is easy to see (cf. Exercise 5) that the degrees of these minimal polynomials are
at most n? where n is the dimension of V. We shall shortly prove that the minimal
polynomial for T is a divisor of the characteristic polynomial for T (this is the Cayley—
Hamilton Theorem), and similarly for A, so in fact the degrees of these polynomials are
at most n.

We now describe the rational canonical form of the linear transformation T (re-
spectively, of the n x n matrix A). By Theorem 5 we have an isomorphism

V = Flxl/(@(x) ® FIx]/(@(x) & - -- ® FIxl/(@n(x))  (12.1)

of F[x]-modules where a;(x), ax(x), ..., a,,(x) are polynomials in F[x] of degree at
least one with the divisibility conditions
ai(x) | ax(x) | -+ | am(x).

These invariant factors a; (x) are bnly determined up to a unit in F[x] but since the units
of F[x]areprecisely the nonzero elements of F (i.e., the nonzero constant polynomials),
we may make these polynomials unigue by stipulating that they be monic.

Since the annihilator of V is the ideal (a,,(x)) (part (3) of Theorem 5), we imme-
diately obtain:

Proposition 13. The minimal polynomial m(x) is the largest invariant factor of V.
All the invariant factors of V divide m7 (x).

We shall see below how to calculate not only the minimal polynomial for T but
also the other invariant factors.

We now choose a basis for each of the direct summands for V in the decomposition
(1) above for which the matrix for T is quite simple. Recall thatthe linear transformation
T acting on the left side of (1) is the element x acting by multiplication on each of the
factors on the right side of the isomorphism in (1).

We have seenin the example following Proposition 1 of Chapter 11 that the elements
1,x,x%, ..., x*! give a basis for the vector space F[x]/(a(x)) where a(x) = x* +
by_1x*~14-..4-b1x + by is any monic polynomial in F[x]and ¥ = x mod (a(x)). With
respect to this basis the linear transformation of multiplication by x acts in a simple

manner: _

X

— X2
3

X

1
x
iZ

*2 x
Pl x

k-1

k 1

=—-by—bx—---— bk_lik_
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where the last equality is because x* + by x*! +---+ b X + by = Osince a(x) = Oin
F[x] / (a(x)). With respect to this basis, the matrix for multiplication by x is therefore

00 ... ... ... =—bg
1 0 ... ... ... =b
01 ... ... ... =by
0 0 ° :
00 ... ... 1 —by

Such matrices are given a name:

Definition. Let a(x) = x* 4+ by_1x*"! + - - - + byx + by be any monic polynomial
in F[x]). The companion matrix of a(x) is the k x k matrix with 1’s down the first
subdiagonal, —by, —bj, ..., —bx_; down the last column and zeros elsewhere. The
companion matrix of a(x) will be denoted by Cy(y)-

We apply this to each of the cyclic modules on the right side of (1) above and let
B; be the elements of V corresponding to the basis chosen above for the cyclic factor
F[x) / (a; (x)) under the isomorphism in (1). Then by definition the linear transformation
T acts on B; by the companion matrix for a; (x) since we have seen that this is how
multiplication by x acts. The union B of the B;’s gives a basis for V since the sum on
the right of (1) is direct and with respect to this basis the linear transformation T has as
matrix the direct sum of the companion matrices for the invariant factors, i.e.,

Cm (x)

Caz x)

(12.2)

Cam (x)

Notice that this matrix is uniquely determined from the invariant factors of the F[x}-
module V and, by Theorem 9, the list of invariant factors uniquely determines the
module V up to isomorphism as an F[x]-module.

Definition.

(1) A matrix is said to be in rational canonical form if it is the direct sum of
companion matrices for monic polynomials a; (x), . .., a,,(x) of degree at least
one with a;(x) | a(x) | --- | am(x). The polynomials g;(x) are called the
invariant factors of the matrix. Such a matrix is also said to be a block diagonal
matrix with blocks the companion matrices for the a; (x).

(2) A rational canonical formfor alinear transformation T is a matrix representing
T which is in rational canonical form.

We have seen that any linear transformation 7 has a rational canonical form. We
now see that this rational canonical form is unique (hence is called the rational canonical

form for T). To see this note that the process we used to determine the matrix of T
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from the direct sum decomposition is reversible. Suppose bj (x), by(x), ..., by(x) are
monic polynomials in F[x] of degree at least one such that b; (x) ] b;;1(x) forall i and
suppose for some basis £ of V, that the matrix of T with respect to the basis £ is the
direct sum of the companion matrices of the b;(x). Then V must be a direct sum of
T -stable subspaces D;, one for each b; (x) in such a way that the matrix of 7 on each D;
is the companion matrix of b; (x). Let &; be the corresponding (ordered) basis of D; (so
£ is the union of the &;) and let ¢; be the first basis element in &;. Then it is easy to see
that D; is acyclic F[x]-module with generator e; and that the annihilator of D; is b; (x).
Thus the torsion F[x}-module V decomposes into a direct sum of cyclic F[x]-modules
in two ways, both of which satisfy the conditions of Theorem 5, i.e., both of which give
lists of invariant factors. Since the invariant factors are unique by Theorem 9, a;(x)
and b;(x) must differ by a unit factor in F[x] and since the polynomials are monic by
assumption, we must have aq;(x) = b;(x) for alli. This proves the following result:

Theorem 14. (Rational Canonical Form for Linear Transformations) Let V be a finite
dimensional vector space over the field F and let T be a linear transformation of V.
(1) There is a basis for V with respect to which the matrix for T is in rational
canonical form, i.e., is a block diagonal matrix whose diagonal blocks are the
companion matrices for monic polynomials g, (x), a(x), ..., a,(x) of degree
at least one with @; (x) | ay(x) | - - - | am(x).
(2) The rational canonical form for 7 is unique.

The use of the word rational is to indicate that this canonical form is calculated
entirely within the field F and exists for any linear transformation 7. This is not the
case for the Jordan canonical form (considered later), which only exists if the field F
contains the eigenvalues for T (cf. also the remarks following Corollary 18).

The following result translates the notion of similar linear transformations (i.e., the
same linear transformation up to a change of basis) into the language of modules and
relates this notion to rational canonical forms.

Theorem 15. Let S and T be linear transformations of V. Then the following are
equivalent:
(1) S and T are similar linear transformations
(2) the F[x]-modules obtained from V via S and via T are isomorphic F[x]-
modules
(3) S and T have the same rational canonical form.

Proof: [(1) implies (2)] Assume thereis a nonsingular linear transformation U such
that S = UTU~!. The vector space isomorphism U : V — V is also an F[x]-module
homomorphism, where x acts on the first V via T and on the second via S, since for ex-
ample U (xv) = U(Tv) = UT (v) = SU(v) = x(Uv). Hence this is an F[x]-module
isomorphism of the two modules in (2).

[(2) implies (3)] Assume (2) holds and denote by V; the vector space V made into
an F[x]-module via S and denote by V, the space V made into an F[x]-module via 7.
Since V) = V;, as F[x]'modules they have the same list of invariant factors. Thus S
and T have a common rational canonical form.
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[(3) implies (1)] Assume (3) holds. Since S and T have the same matrix represen-
tation with respect to some choice of (possibly different) bases of V by assumption,
they are, up to a change of basis, the same linear transformation of V, hence are similar.

Let A be any n x n matrix with entries from F. Let V be an n-dimensional vector
space over F. Recall we can then define a linear transformation 7 on V by choosing
a basis for V and setting 7T (v) = Av where v on the right hand side means the n x 1
column vector of coordinates of v with respect to our chosen basis (this is just the usual
identification of linear transformations with matrices). Then (of course) the matrix for
this 7 with respect to this basis is the given matrix A. Put another way, any n x n matrix
A with entries from the field F arises as the matrix for some linear transformation T of
an n-dimensional vector space.

This dictionary between linear transformations of vector spaces and matrices allows
us to state our previous two results in the language of matrices:

Theorem 16. (Rational Canonical Form for Matrices) Let A be an n X n matrix over
the field F.

(1) The matrix A is similar to a matrix in rational canonical form, i.e., there is an
invertible n x n matrix P over F such that P"1AP is a block diagonal ma-
trix whose diagonal blocks are the companion matrices for monic polynomials
ay(x), ax(x), ..., an(x) of degree at least one with a; (x) | a2(x) | - - - | @m(x).

(2) The rational canonical form for A is unique.

Definition. The invariant factors of an n x n matrix over a field F are the invariant
factors of its rational canonical form.

Theorem 17. Let A and B be n x n matrices over the field F. Then A and B are similar
if and only if A and B have the same rational canonical form.

If A is a matrix with entries from a field F and F is a subfield of a larger field K
then we may also consider A as amatrixover K. The next result shows that the rational
canonical form for A and questions of similarity do not depend on which field contains
the entries of A.

Corollary 18. Let A and B be two n x n matrices over a field F and suppose F is a
subfield of the field K.

(1) The rational canonical form of A is the same whether it is computed over K or
over F. The minimal and characteristic polynomials and the invariant factors
of A are the same whether A is considered as a matrix over F or as a matrix
over K.

(2) The matrices A and B are similar over K if and only if they are similar over
F, i.e., there exists an invertible # x n matrix P with entries from K such that
B = P! AP if and only if there exists an (in general different) invertible n x n
matrix Q with entries from F such that B = Q"'AQ.

Proof: (1) Let M be the rational canonical form of A when computed over the
smaller field F. Since M satisfies the conditions in the definition of the rational canon-
ical form over K, the uniqueness of the rational canonical form implies that M is also
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the rational canonical form of A over K. Hence the invariant factors of A are the same
whether A is viewed over F or over K. In particular, since the minimal polynomial
is the largest invariant factor of A it also does not depend on the field over which A is
viewed. It is clear from the determinant definition of the characteristic polynomial of
A that this polynomial depends only on the entries of A (we shall see shortly that the
characteristic polynomial is the product of all the invariant factors for A, which will
give an alternate proof of this result).

(2) If A and B are similar over the smaller field F they are clearly similar over K.
Conversely, if A and B are similar over K, they have the same rational canonical form
over K. By (1) they have the same rational canonical form over F, hence are similar
over F by Theorem 17.

This corollary asserts in particular that the rational canonical form for an n x n
matrix A is an n X n matrix with entries in the smallest field containing the entries
of A. Further, this canonical form is the same matrix even if we allow conjugation of
A by nonsingular matrices whose entries come from larger fields. This explains the
terminology of rational canonical form.

The next proposition gives the connection between the characteristic polynomial
of a matrix (or of a linear transformation) and its invariant factors and is quite useful
for determining these invariant factors (particularly for matrices of small size).

Lemma 19. Let a(x) € F[x] be any monic polynomial.
(1) The characteristic polynomial of the companion matrix of a(x) is a(x).
(2) If M is the block diagonal matrix

A 0 ... O

0 A ... 0

0 0 ... A
given by the direct sum of matrices A, Ay, ..., Ay thenthe characteristic poly-
nomial of M is the product of the characteristic polynomials of Aj, Ao, ..., As.

Proof: These are both straightforward exercises.

Proposition 20. Let A be an n x n matrix over the field F.

(1) The characteristic polynomial of A is the product of all the invariant factors of
A.

(2) (The Cayley—Hamilton Theorem) The minimal polynomial of A divides the
characteristic polynomial of A.

(3) The characteristic polynomial of A divides some power of the minimal poly-
nomial of A. In particular these polynomials have the same roots, not counting
multiplicities.

The same statements are true if the matrix A is replaced by a linear transformation T
of an n-dimensional vector space over F.
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Proof: Let B be the rational canonical form of A. By the previous lemma the block
diagonal form of B shows that the characteristic polynomial of B is the product of the
characteristic polynomials of the companion matrices of the invariant factors of A. By
the first part of the lemma above, the characteristic polynomial of the companion matrix
Ca(x) fora(x) is just a(x), which implies that the characteristic polynomial for B is the
product of the invariant factors of A. Since A and B are similar, they have the same
characteristic polynomial, which proves (1). Assertion (2) is immediate from (1) since
the minimal polynomial for A is the largest invariant factor of A. The fact that all the
invariant factors divide the largest one immediately implies (3). The final assertion is
clear from the dictionary between linear transformations of vector spaces and matrices.

Note that part (2) of the proposition is the assertion thatthe matrix A satisfies its own
characteristic polynomial, i.e., c4 (A) = 0 as matrices, which is the usual formulation
for the Cayley—Hamilton Theorem. Note also that it implies the degree of the minimal
polynomial for A has degree at most n, a result mentioned before.

The relations in Proposition 20 are frequently quite useful in the determination
of the invariant factors for a matrix A, particularly for matrices of small degree (cf.
Exercises 3 and 4 and the examples). The following result (which relies on Exercises
16 to 19 in the previous section and whose proof we outline in the exercises) computes
the invariant factors in general.

Let A be an n x n matrix over the field F. Then xI — A is an n X n matrix with
entries in F[x]. The three operations
(a) interchanging two rows or columns
(b) adding a multiple (in F[x]) of one row or column to another
(c) multiplying any row or column by a unit in F[x], i.e., by a nonzero element in F,
are called elementary row and column operations.

Theorem 21. Let A be an n x n matrix over the field F. Using the three elementary
row and column operations above, the n x n matrix xI — A with entries from F[x] can
be put into the diagonal form (called the Smith Normal Form for A)

(1 )
1
a(x)
az(x)
\ G (x))
with monic nonzero elements a; (x), a;(x), ..., a,(x) of F[x] with degrees at least
one and satisfying a;(x) | a(x) | - - - | a,,(x). The elements a;(x), ..., a,,(x) are the

invariant factors of A.

Proof: cf. the exercises.
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Invariant Factor Decomposition Algorithm: Converting to Rational
Canonical Form

As mentioned in the exercises near the end of the previous section, keeping track of
the operations necessary to diagonalize xI — A will explicitly give a matrix P such
that P~! AP is in rational canonical form. Equivalently, if V is a given F[x]-module
with vector space basis [ey, ez, . .., e,], then P defines the change of basis giving the
Invariant Factor Decomposition of V into a direct sum of cyclic F[x]-modules. In
particular, if A is the matrix of the linear transformation T of the F[x]-module V
defined by x (i.e., T(e;) = xej = ) ;_, aije; where A = (g;;)), then the matrix P
defines the change of basis for V with respect to which the matrix for T is in rational
canonical form.

We first describe the algorithm in the general context of determining the Invariant
Factor Decomposition of a given F[x]-module V with vector spacebasis [e}, €3, . . . , €,]
(the proof is outlined in the exercises). We then describe the algorithm to converta given
n X n matrix A to rational canonical form (in which reference to an underlying vector
space and associated linear transformation are suppressed).

Explicit numerical examples of this algorithm are given in Examples 2 and 3 fol-
lowing.

Invariant Factor Decomposition Algorithm

Let V be an F[x]-module with vector space basis [e;, e, - - ., ,] (soin particular these
elements are generators for V as an F[x]-module). Let T be the linear transformation
of V to itself defined by x and let A be the n x n matrix associated to T and this choice
of basis for V, i.e.,

n
T(ej) =xej = Za,jei where A = (a;j).
i=1

(1) Use the following three elementary row and column operations to diagonalize the

matrix xI — A over F[x], keeping track of the row operations used:

(a) interchange two rows or columns (which will be denoted by R; <> R; for the
interchange of the i™ and j® rows and similarly by C; <> C j for columns),

(b) add a multiple (in F[x]) of onerow or column to another (which will be denoted
by R; + p(x)R; — R; if p(x) times the j® row is added to the i row, and
similarly by C; + p(x)C; — C; for columns),

(c) multiply any row or column by a unit in F[x], i.e., by a nonzero element in
F (which will be denoted by uR; if the i™ row is multiplied by u € F*, and
similarly by uC; for columns).

(2) Beginning with the F[x]-module generators [ey, e, . . . , e,], for eachrow operation
used in (1), change the set of generators by the following rules:
(a) If the i™ row is interchanged with the j® row then interchange the i and j®
generators.
(b) If p(x) times the j™ row is added to the i row then subtract p(x) times the
i™h generator from the j™ generator (note the indices).
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(c) If the i™ row is multiplied by the unit u € F then divide the i generator by u.
(3) When xI — A has been diagonalized to the form in Theorem 21 the genera-

tors [eq, es,...,¢e,] for V will be in the form of F[x]-linear combinations of
e, €e,...,e,. Use xe; = T(ej) = Z?Zla,-je,- to write these elements as F-
linear combinations of ey, e;, ..., e,. When xI — A has been diagonalized, the

first n — m of these linear combinations are O (providing a useful numerical check
on the computations) and the remaining m linear combinations are nonzero, i.e.,
the generators for V areinthe form [0, ..., 0, fi, ..., fn] corresponding precisely
to the diagonal elements in Theorem 21. The elements f,..., f,, are a set of
F[x]-module generators for the cyclic factors in the invariant factor decomposition
of V (with annihilators (a; (x)), - . ., (a(x)), respectively):

V=Fx] i®Fx]1£20®...®Fx] fn,
Flx1f; 2 Flxl/@(x) i=12,....m,

giving the Invariant Factor Decomposition of the F[x]-module V.

(4) The corresponding vector space basis for each cyclic factor of V is then given by
the elements f;, Tf;, T f;, ..., T%ea®)-1 £

(5) Write the k™ element of the vector space basis computed in (4) in terms of the
original vector space basis [ej, e, . . . , €,] and use the coordinates for the kX column
of an n x n matrix P. Then P~! AP is in rational canonical form (with diagonal
blocks the companion matrices for the a;(x)). This is the matrix for the linear
transformation 7 with respect to the vector space basis in (4).

Wenow describe the algorithm to convert a given n xn matrix A to rational canonical
form, i.e., to determine an n x n matrix P so that P~ AP is in rational canonical form.
This is nothing more than the algorithm above applied to the vector space V = F”"
of n x 1 column vectors with standard basis [ej, e, ..., e,] (Where ¢; is the column
vector with 1 in the i™ position and 0’s elsewhere) and T is the linear transformation
defined by A and this choice of basis. Explicit reference to this underlying vector space
and associated linear transformation are suppressed, so the algorithm is purely matrix
theoretic.

Converting an n x n Matrix to Rational Canonical Form

Let A be an n x n matrix with entries in the field F'.

(1) Use the following three elementary row and column operations to diagonalize the

matrix xI — A over F[x], keeping track of the row operations used:

(a) interchange two rows or columns (which will be denoted by R; <> R; for the
interchange of the i and j™ rows and similarly by C; <> C; for columns),

(b) adda multiple (in F[x]) of onerow or column to another (which will be denoted
by R; + p(x)R; > R; if p(x) times the j™ row is added to the i™ row, and
similarly by C; + p(x)C; + C; for columns),

(¢) multiply any row or column by a unit in F[x], i.e., by a nonzero element in
F (which will be denoted by uR; if the i row is multiplied by u € F*, and
similarly by uC; for columns).
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Define dj, ..., d, to be the degrees of the monic nonconstant polynomials
ay(x), ..., an(x) appearing on the diagonal, respectively.

(2) Beginning with the n x n identity matrix P’, for each row operation used in (1),
change the matrix P’ by the following rules:

(a) If R; « R; then interchange the i and j® columns of P’ (ie., C; & C ; for
P’).

(b) If R; + p(x)R; — R; then subtract the product of the matrix p(A) times the
i™ column of P’ from the j® column of P’ (ie., C; — p(A)C; — C;j for P’
— note the indices).

(c) If uR; then divide the elements of the i column of P’ by u (i.e., u~'C; for
P’).

(3 When xI — A has been diagonalized to the form in Theorem 21 the first n — m
columns of the matrix P’ are O (providing a useful numerical check on the compu-
tations) and the remaining m columns of P’ are nonzero. Foreachi = 1,2, ..., m,
multiply the i nonzero column of P’ successively by A? = I, Al, A2, ..., A%~
where d; is the integer in (1) above and use the resulting column vectors (in this
order) as the next d; columns of an n x n matrix P. Then P~ AP is in ratio-
nal canonical form (whose diagonal blocks are the companion matrices for the
polynomials a;(x), ..., a,(x) in (1)).

In the theory of canonical forms for linear transformations (or matrices) the charac-
teristic polynomial plays the role of the order of a finite abelian group and the minimal
polynomial plays the role of the exponent (after all, they are the same invariants, one
for modules over the Principal Ideal Domain Z and the other for modules over the
Principal Ideal Domain F[x]) so we can solve problems directly analogous to those
we considered for finite abelian groups in Chapter 5. In particular, this includes the
following:

(A) determine the rational canonical form of a given matrix (analogous to decomposing
a finite abelian group as a direct product of cyclic groups)

(B) determine whethertwo given matrices are similar (analogous todetermining whether
two given finite abelian groups are isomorphic)

(C) determine all similarity classes of matrices over F with a given characteristic poly-
nomial (analogous to determining all abelian groups of a given order)

(D) determine all similarity classes of n x n matrices over F with a given minimal
polynomial (analogous to determining all abelian groups of rank at most n of a
given exponent).

Examples

(1) We find the rational canonical forms of the following matrices over Q and determine
if they are similar:

2 2 14 0 —4 85 2 2 1
A=|o 3 —7] B=|1 4 -30]| c=o0 2 -1}
0 0 2 0 0 3 00 3

A direct computation shows that all three of these matrices have the same characteristic
polynomial: c4(x) = cp(x) = cc(x) = (x — 2)2(x —3). Since the minimal and char-

482 Chap. 12 Modules over Principal Ideal Domains



acteristic polynomials have the same roots, the only possibilities for the minimal poly-
nomials are (x —2) (x—3) or (x —2)2(x—3). We quickly find that (A—21)(A-31) =0,
(B — 2I)(B — 3I) # O (the 1,1-entry is nonzero) and (C — 2I)(C — 3I) # O (the
1,2-entry is nonzero). It follows that

ma(x) = (x —=2)(x —3), mp(x) =mc(x) = (x —2)*(x - 3).

It follows immediately that there are no additional invariant factors for B and C.
Since the invariant factors for A divide the minimal polynomial and have product
the characteristic polynomial, we see that A has for invariant factors the polynomials
x—2,(x —2)(x = 3) = x2—5x+6. (For2 x 2 and 3 x 3 matrices the determination
of the characteristic and minimal polynomials determines all the invariant factors, cf.
Exercises 3 and 4.) We conclude that B and C are similar and neither is similar to A.
The rational canonical forms are (note (x — 2)2(x —3) = x3 — 7x2 + 16x — 12)

20 O 0 0 12 0 0 12
0 0 —6 1 0 -16 1 0 —-16].
01 5 01 7 0 1 7

(2) Inthe example above the rational canonical forms wereobtained simply by determining
the characteristic and minimal polynomials for the matrices. As mentioned, this is
sufficient for 2 x 2 and 3 x 3 matrices since this information is sufficient to determine
all of the invariant factors. For larger matrices, however, this is in general not sufficient
(cf. the next example) and more work is required to determine the invariant factors. In
this example we again compute the rational canonical form for the matrix A in Example
1 following the two algorithms outlined above. While this is computationally more
difficult for this small matrix (as will be apparent), it has the advantage even in this
case that it also explicitly computes a matrix P with P~1AP in rational canonical
form.

L. (Invariant Factor Decomposition) We use row and column operations (in Q[x]) to

reduce the matrix
x—2 2 —-14
xI — A= 0 x—3 7
0 0 x—=2

to diagonal form. As in the invariant factor decomposition algorithm, we shall use the
notation R; <> R; to denote the interchange of the i and j rows, R; + aR;j — R;
if a times the /™ row is added to the /" row, simply uR; if the i" row is multiplied
by u (and similarly for columns, using C instead of R). Note also that the first two
operations we perform below are rather ad hoc and were chosen simply to have integers
everywhere in the computation:

x-—2 2 -14 x=-2 x-1 -7
0 x-3 7 —> 0 x-3 7 —
0 0 x—2) BtR 0 0 x-2

R,
-1 x-1 -7 1 —x+1 7
— —x+3 x-3 7 — | —x+3 x-3 7 —
a2\ o 0 x2/ o 0 x-2
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1 —x+1 7 1 0 7
R+(—>3)R 0 —x245x—6 7(x—2) C+(—>1)C 0 —x245x—6 7(x-2) | —
x—. x—
2 o Ry ''\O 0 x—2 2 Co ''\0 0 x—2

1 0 0 1 0 0
— 0 —x245x—6 76-2) | — | 0 x2-5x+6 7x=2)| —

G3-1C, -G,
7o \o o x—2 0 0 x—2
1 0 0 1 0 0
e |0 x2-5x+6 0 e (0 *2 0 )
_ PR )
. R: 0 0 x—2 C;_)C; 0 0 x*-5x+46

This determines the invariant factors x — 2, x2 — 5x + 6 for this matrix, which we
determined in Example 1 above. Let now V be a 3-dimensional vector space over
Q with basis €1, e2, e3 and let T be the corresponding linear transformation (which
defines the action of x on V), i.e.,

xe; = T(e1) = 2e1
xez = T (e2) = —2e1 + 3e2
xe3 = T (e3) = 14e1 — Tez + 2es.
The row operations used in the reduction above were
Ri+ Ry~ Ry, —R1, Ro+(x —3)R1 — Rz, Ry — 7R3 — Ry, Ry & Rs.

Starting with the basis [e1, e2, €3] for V and changing it according to the rules given
in the text, we obtain

le1, 2, €3] —> [e1, e2—e1, €3] —> [—e1, e2—e1, €3]
—> [—e1—(x—3)(e2—e1), e2—e1, €3]
— [—e1—(x—3)(e2—e1), e2—e1, e3+7(e2—e1)]
—> [—e1—(x—3)(e2—e1), e3+7(e2—e1), e2—e1]).

Using the formulas above for the action of x, we see that these last elements are
the elements [0, —7e1 + 7e2 + e3, —e; + e2] of V corresponding to the elements
1,x — 2 and x2 — 5x + 6 in the diagonalized form of x/ — A, respectively. The
elements fi = —7e; + 7e2 + e3 and fo = —e1 + ey are therefore Q[x]-module
generators for the two cyclic factors of V in its invariant factor decomposition as a
Q[x])-module. The corresponding Q-vector space bases for these two factors are then
fiand fo,xfo = Tfa,ie.,—Te1+Tez+e3 and —e1 +e2, T(—e1 +e2) = —4e1+ 3e2.

Then the matrix
-7 -1 -4
P= 7 1 3

1 0 0

conjugates A into its rational canonical form:

20 0
Plap=]0 0 -6].
01 5

as one easily checks.

484 ~ Chap.12  Modules over Principal Ideal Domains



II. (Converting A Directly to Rational Canonical Form) We use the row operations
involved in the diagonalization of xI — A to determine the matrix P’ of the algorithm

above:

1 00 1 -1 0 -1 -1 0

010 C—E 0 10 —C> 0 1 0 —»

22—t —C1

001/ 22 \0 01 0 01

0 -1 0 0o -1 -7 0o -7 -1
c (A_)BI)C 0 1.0 c—+_7)c 0 17 Gook 0 7 1]=P
—(A— 26>(3
e o 0 1) T2 \o 0 1 *\o0 1 o0

Here we have di = 1 and d» = 2, corresponding to the second and third nonzero
columns of P’, respectively. The columns of P are therefore given by

-7 —1 —1 —4
7 and 1], A 1]= 31,
1 0 0 0

respectively, which again gives the matrix P above.

(3) For the 3 x 3 matrix A it was not necessary to perform the lengthy calculations
above merely to determine the rational canonical form (equivalently, the invariant
factors), as we saw in Example 1. For n x n matrices with n > 4, however, the
computation of the characteristic and minimal polynomials is in general not sufficient
for the determination of all the invariant factors, so the more extensive calculations of
the previous example may become necessary. For example, consider the matrix

1 2 -4 4
2 -1 4 -8
P=11 o 1 =2

o 1 -2 3

A short computation shows that the characteristic polynomial of D is (x — 1)*. The
possible minimal polynomials are then x — 1, (x — 1)2, (x — 1)3 and (x — 1)*. Clearly
D — I # 0 and another short computation shows that (D — I)? = 0, so the minimal
polynomial for D is (x — 1)2. There are then two possible sets of invariant factors:

x—1,x—=1,x-1D% and (x—-12 (x-1)>%

To determine the invariant factors for D we apply the procedure of the previous example
to the 4 x 4 matrix
x—1 =2 4 —4

-2 x+1 -4 8

-1 0 x-1 2

0 -1 2 x-3

The diagonal matrix obtained from this matrix by elementary row and column opera-
tions is the matrix

xI - D=

10 O 0
0 1 0 0

0 0 (x—1)? 0 ’
00 0 (x—1)2

which shows that the invariant factors for D are (x — 1)2, (x — 1) (one series of
elementary row and column operations which diagonalize x — Dare Ry < R3,—R),
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Ry +2Ri1—» R, R3—(x—1DR1» R;,C3+(x—-1)C; > C3,C4+2C1 > Cy4,
R Ry, R, R34+2R —» R3, Ry —(x+1DR2 > Ry, C3+2C; > C3,
Ca+(x —3)Cr > Cy).

L (Invariant Factor Decomposition) If e;, ez, €3, e4 is a basis for V in this case, then
using the row operations in this diagonalization as in the previous example we see that
the generators of V corresponding to the factors above are (x — 1)e1 — 2e; — e3 =0,
—2e1+(x+1)ez —eq = 0, e1, e2. Hence a vector space basis for the two direct factors
in the invariant decomposition of V in this case is given by e1, T e; and ez, Te; where
T is the linear transformation defined by D, i.e., e1, €1 +2e2 + €3 and e3, 21 —e2+ea.
The corresponding matrix P relating these bases is

1 10 2

0 21 -1

P=lo 10 o

0 0O 1

so that P! D P is in rational canonical form:

0 -1 0 O
1 11 20 O
P DP = 0 0 0 -1
0 01 2

as can easily be checked.

II. (Converting D Directly to Rational Canonical Form) As in Example 2 we determine
the matrix P’ of the algorithm from the row operations used in the diagonalization of

xI — D:
1 000 0010 0 010
0100 . 0100 N 0100 R
0 01 0Jcgecs {1 0 0 O) - {-1 0 0O
0 0 01 0 001 0 0 01
0010 0010 0 010
N (—2 1 00 . 0100 N (O 0 01 R
a-2c; -1 0 0 O)ci+o-nc; {0 O O O)coc, {O O O O
=G 0 0 01 —Ci 0 0 01 0100
0 010 0 -2 10 0 010
N 0 00 1 . 0 0 01 N 0 0O 1) _p
10 0 0 Oc,2c {0 0 O O) cott+ncs O 0 O O
0 -1 0 »CG \0 -1 0 O Gy 0 00O

Here we have di = 2 and d; = 2, corresponding to the third and fourth nonzero
columns of P’. The columns of P are therefore given by

1 1 1 0 0 2
0 0 2 1 1 -1
ol Plo]=1] ™ o) Plol=| o)
0 0 0 0 0 1

respectively, which again gives the matrix P above.

(4) In this example we determine all similarity classes of matrices A with entries from Q
with characteristic polynomial (x* —1) (x2—1). First note that any matrix with a degree
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